首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study were to investigate middle finger movements and dynamics of ball movements around the instant of ball release during baseball pitching. Baseball pitching from an indoor mound among 14 semi-professional pitchers was captured using a motion capture system with 16 high-speed cameras (1,000 Hz). Kinematics of middle finger joints, ball rotation, and force applied to the ball were calculated. The proximal and distal interphalangeal joints continued to extend until the instant of ball release, then abruptly flexed. The abrupt flexion lasted for only several milliseconds, followed by a short extension phase. The finger made a quick double cycle of extension-flexion movement, suggesting that it attained high stiffness resulting from co-contraction. The ball began to roll up to the tip of the finger 8 ± 1 ms before ball release owing to the start of extension or the increased angular velocity of extension for the proximal interphalangeal joint. A mean force of 195 ± 27 N was applied in the proximal direction of the hand at the same time as the beginning of ball rolling, and a mean force of 109 ± 22 N was applied to the throwing direction just before ball release.  相似文献   

2.
3.
Abstract

In this study, we wished to investigate the factors that determine the direction of the spin axis of a pitched baseball. Nineteen male baseball pitchers were recruited to pitch fastballs. The pitching motion was recorded with a three-dimensional motion analysis system (1000 Hz), and the orientations of the hand segment in a global coordinate system were calculated using Euler rotation angles. Reflective markers were attached to the ball, and the direction of the spin axis was calculated on the basis of their positional changes. The spin axis directions were significantly correlated with the orientations of the hand just before ball release. The ball is released from the fingertip and rotates on a plane that is formed by the palm and fingers; the spin axis of the ball is parallel to this plane. The lift force of the pitched baseball is largest when the angular and translational velocity vectors are mutually perpendicular. Furthermore, to increase the lift forces for the fastballs, the palm must face home plate.  相似文献   

4.
Direction of spin axis and spin rate of the pitched baseball   总被引:1,自引:0,他引:1  
In this study, we aimed to determine the direction of the spin axis and the spin rate of pitched baseballs and to estimate the associated aerodynamic forces. In addition, the effects of the spin axis direction and spin rate on the trajectory of a pitched baseball were evaluated. The trajectories of baseballs pitched by both a pitcher and a pitching machine were recorded using four synchronized video cameras (60 Hz) and were analyzed using direct linear transform (DLT) procedures. A polynomial function using the least squares method was used to derive the time-displacement relationship of the ball coordinates during flight for each pitch. The baseball was filmed immediately after ball release using a high-speed video camera (250 Hz), and the direction of the spin axis and the spin rate (omega) were calculated based on the positional changes of the marks on the ball. The lift coefficient was correlated closely with omegasinalpha (r = 0.860), where alpha is the angle between the spin axis and the pitching direction. The term omegasinalpha represents the vertical component of the velocity vector. The lift force, which is a result of the Magnus effect occurring because of the rotation of the ball, acts perpendicularly to the axis of rotation. The Magnus effect was found to be greatest when the angular and translational velocity vectors were perpendicular to each other, and the break of the pitched baseball became smaller as the angle between these vectors approached 0 degrees. Balls delivered from a pitching machine broke more than actual pitcher's balls. It is necessary to consider the differences when we use pitching machines in batting practice.  相似文献   

5.
The proximal-to-distal segmental sequence has been identified in many sports activities, including baseball pitching and ball kicking. However, proximal-to-distal sequential muscle activity has not been identified. The aims of this study were to establish whether sequential muscle activity does occur and, if it does, to determine its functional role. We recorded surface electromyograms (EMGs) for 17 muscles from the upper extremity and abdomen during overarm throwing and detected the onset and peak times as indices of muscle activity. The following electromyographic properties were commonly identified in the participants. First, sequential muscle activity was observed from the scapular protractors to the shoulder horizontal flexors and from the shoulder horizontal flexors to the elbow extensor, but not from the elbow extensor to the wrist flexor or forearm pronator. Secondly, the external oblique contralateral to the throwing arm became activated before the ipsilateral external oblique. This sequence is considered to be very effective for the generation of high force and energy in the trunk. Thirdly, the ipsilateral external oblique began its activity almost at foot strike. Finally, the main activity of the rectus abdominis appeared just before the point of release.  相似文献   

6.
The proximal-to-distal segmental sequence has been identified in many sports activities, including baseball pitching and ball kicking. However, proximal-to-distal sequential muscle activity has not been identified. The aims of this study were to establish whether sequential muscle activity does occur and, if it does, to determine its functional role. We recorded surface electromyograms (EMGs) for 17 muscles from the upper extremity and abdomen during overarm throwing and detected the onset and peak times as indices of muscle activity. The following electromyographic properties were commonly identified in the participants. First, sequential muscle activity was observed from the scapular protractors to the shoulder horizontal flexors and from the shoulder horizontal flexors to the elbow extensor, but not from the elbow extensor to the wrist flexor or forearm pronator. Secondly, the external oblique contralateral to the throwing arm became activated before the ipsilateral external oblique. This sequence is considered to be very effective for the generation of high force and energy in the trunk. Thirdly, the ipsilateral external oblique began its activity almost at foot strike. Finally, the main activity of the rectus abdominis appeared just before the point of release.  相似文献   

7.
The aim of this study was to analyse the kinematic sequencing in the penalty-corner drag-flicks of elite male and female field hockey players of international calibre. Thirteen participants (one skilled male drag-flicker and six male and six female elite players) participated in the study. An optoelectronic motion analysis system was used to capture the drag-flicks with six cameras, sampling at 250 Hz. Select ground reaction force parameters were obtained from a force platform which registered the last support of the front foot. Twenty trials were captured from each subject. Both player groups showed significantly (p < 0.05) smaller ball velocity at release, peak angular velocity of the pelvis, and negative and positive peak angular velocities of the stick than the skilled subject. Normalised ground reaction forces of the gender groups were also smaller than that of the skilled drag-flicker. By comparing these players we established that the cues of the skill level are a wide stance, a whipping action (rapid back lift) of the stick followed by an explosive sequential movement of the pelvis, upper trunk and stick.  相似文献   

8.
Joint angles of the throwing limb were examined from the acceleration phase up until release for the sidearm throwing motion when using a flying disc. 17 individuals (ten skilled, seven unskilled) threw a disc as far as possible ten times. Throwing motions were recorded using three-dimensional high-speed videography. The initial condition of disc release and joint angle kinematics of the upper limb during the throwing motion were obtained. Mean ( ± standard deviation) throwing distance and disc spin rate were significantly greater for skilled throwers (51.4 ± 6.6 m, 12.9 ± 1.3 rps) than for unskilled throwers (29.5 ± 7.6 m, 9.4 ± 1.3 rps), although there was no significant difference in initial velocity of the disc between the two groups (skilled: 21.7 ± 1.7 m/s; unskilled: 20.7 ± 2.5 m/s). A marked difference in motion of supination/pronation of the forearm before disc release was identified, with the forearm supinated in the final acceleration phase leading up to disc release for the unskilled participants, while the forearm was pronated in the same phase for the skilled participants. These differences in joint kinematics could be related to differences in disc spin rate, and thus led to the substantial differences in throwing distance.  相似文献   

9.
Lacrosse requires the coordinated performance of many complex skills. One of these skills is shooting on the opponents’ net using one of three techniques: overhand, sidearm or underhand. The purpose of this study was to (i) determine which technique generated the highest ball velocity and greatest shot accuracy and (ii) identify kinematic and kinetic variables that contribute to a high velocity and high accuracy shot. Twelve elite male lacrosse players participated in this study. Kinematic data were sampled at 250 Hz, while two-dimensional force plates collected ground reaction force data (1000 Hz). Statistical analysis showed significantly greater ball velocity for the sidearm technique than overhand (< 0.001) and underhand (< 0.001) techniques. No statistical difference was found for shot accuracy (P > 0.05). Kinematic and kinetic variables were not significantly correlated to shot accuracy or velocity across all shot types; however, when analysed independently, the lead foot horizontal impulse showed a negative correlation with underhand ball velocity (= 0.042). This study identifies the technique with the highest ball velocity, defines kinematic and kinetic predictors related to ball velocity and provides information to coaches and athletes concerned with improving lacrosse shot performance.  相似文献   

10.
To assess ball impact force during soccer kicking is important to quantify from both performance and chronic injury prevention perspectives. We aimed to verify the appropriateness of previous models used to estimate ball impact force and to propose an improved model to better capture the time history of ball impact force. A soccer ball was fired directly onto a force platform (10 kHz) at five realistic kicking ball velocities and ball behaviour was captured by a high-speed camera (5,000 Hz). The time history of ball impact force was estimated using three existing models and two new models. A new mathematical model that took into account a rapid change in ball surface area and heterogeneous ball deformation showed a distinctive advantage to estimate the peak forces and its occurrence times and to reproduce time history of ball impact forces more precisely, thereby reinforcing the possible mechanics of ‘footballer’s ankle’. Ball impact time was also systematically shortened when ball velocity increases in contrast to practical understanding for producing faster ball velocity, however, the aspect of ball contact time must be considered carefully from practical point of view.  相似文献   

11.
The purpose of this study was to quantify trunk axial rotation and angular acceleration in pitching and batting of elite baseball players. Healthy professional baseball pitchers (n = 40) and batters (n = 40) were studied. Reflective markers attached to each athlete were tracked at 240 Hz with an eight-camera automated digitizing system. Trunk axial rotation was computed as the angle between the pelvis and the upper trunk in the transverse plane. Trunk angular acceleration was the second derivative of axial rotation. Maximum trunk axial rotation (55 ± 6°) and angular acceleration (11,600 ± 3,100 °/s2) in pitching occurred before ball release, approximately at the instant the front foot landed. Maximum trunk axial rotation (46 ± 9°) and angular acceleration (7,200 ± 2,800 °/s2) in batting occurred in the follow-through after ball contact. Thus, the most demanding instant for the trunk and spine was near front foot contact for pitching and after ball contact for batting.  相似文献   

12.
Using plain white and chequered footballs, we evaluated observers’ sensitivity to rotation direction and the effects of ball texture on interceptive behaviour. Experiment 1 demonstrated that the maximal distance at which observers (= 8) could perceive the direction of ball rotation decreased when rotation frequency increased from 5 to 11 Hz. Detection threshold distances were nevertheless always larger for the chequered (decreasing from 47 to 28 m) than for the white (decreasing from 15 to 11 m) ball. In Experiment 2, participants (n = 7) moved laterally along a goal line to intercept the two balls launched with or without ±4.3 Hz sidespin from a 30-m distance. The chequered ball gave rise to shorter movement initiation times when trajectories curved outward (±6 m arrival positions) or did not curve (±2 m arrival positions). Inward curving trajectories, arriving at the same ±2 m distances from the participants as the non-curving trajectories, evoked initial movements in the wrong direction for both ball types, but the amplitude and duration of these reversal movements were attenuated for the chequered ball. We conclude that the early detection of rotation permitted by the chequered ball allowed modulation of interception behaviour without changing its qualitative characteristics.  相似文献   

13.
In this study, we wished to investigate the factors that determine the direction of the spin axis of a pitched baseball. Nineteen male baseball pitchers were recruited to pitch fastballs. The pitching motion was recorded with a three-dimensional motion analysis system (1000?Hz), and the orientations of the hand segment in a global coordinate system were calculated using Euler rotation angles. Reflective markers were attached to the ball, and the direction of the spin axis was calculated on the basis of their positional changes. The spin axis directions were significantly correlated with the orientations of the hand just before ball release. The ball is released from the fingertip and rotates on a plane that is formed by the palm and fingers; the spin axis of the ball is parallel to this plane. The lift force of the pitched baseball is largest when the angular and translational velocity vectors are mutually perpendicular. Furthermore, to increase the lift forces for the fastballs, the palm must face home plate.  相似文献   

14.
The purpose of this study was to analyse the raw lifting speed collected during four different resistance training exercises to assess the optimal sampling frequency. Eight physically active participants performed sets of Squat Jumps, Countermovement Jumps, Squats and Bench Presses at a maximal lifting speed. A linear encoder was used to measure the instantaneous speed at a 200 Hz sampling rate. Subsequently, the power spectrum of the signal was computed by evaluating its Discrete Fourier Transform. The sampling frequency needed to reconstruct the signals with an error of less than 0.1% was f99.9 = 11.615 ± 2.680 Hz for the exercise exhibiting the largest bandwidth, with the absolute highest individual value being 17.467 Hz. There was no difference between sets in any of the exercises. Using the closest integer sampling frequency value (25 Hz) yielded a reconstruction of the signal up to 99.975 ± 0.025% of its total in the worst case. In conclusion, a sampling rate of 25 Hz or above is more than adequate to record raw speed data and compute power during resistance training exercises, even under the most extreme circumstances during explosive exercises. Higher sampling frequencies provide no increase in the recording precision and may instead have adverse effects on the overall data quality.  相似文献   

15.
Cricket bowling is traditionally thought to be a rigid-arm motion, allowing no elbow straightening during the delivery phase. Conversely, research has shown that a perfectly rigid arm through delivery is practically unattainable, which has led to rule changes over the past years. The current rule requires a bowler not to increase the elbow angle by more than 15°, thus requiring a measurement to confirm legality in “suspect” bowlers. The aims of this study were to evaluate whether the current rule is maintained over a range of bowlers and bowling styles, and to ascertain whether other kinematics measures may better differentiate between legal and suspect bowling actions. Eighty-three bowlers of varying pace were analysed using reflective markers and a high-speed (240 Hz) eight-camera motion analysis system in a laboratory. The change in elbow segment angle (minimum angle between the arm and forearm), the change in elbow extension angle with respect to the flexion–extension axis of a joint coordinate system, and the elbow extension angular velocity at ball release were measured. We found that bowlers generally bowled within a change in elbow extension angle of 15°. However, this limit was unable to differentiate groups of bowlers from those who were suspected of throwing in the past. Improved differentiation was attained using the elbow extension angular velocity at ball release. The elbow extension angular velocity at ball release may be conceptually more valid than the elbow extension angle in determining which bowlers use the velocity-contributing mechanisms of a throw. Also, a high value of elbow extension angular velocity at ball release may be related to the visual impression of throwing. Therefore, it is recommended that researchers and cricket legislators examine the feasibility of specifying a limit to the elbow extension angular velocity at ball release to determine bowling legality.  相似文献   

16.
Artistic gymnasts are frequently exposed to both low- and high-magnitude loads through impacts with the apparatus. These impact loads are thought to be associated with the high injury rates observed in gymnastics. Due to the variable apparatus and surfaces in gymnastics, impact loads during training are difficult to quantify. This study aimed to use triaxial accelerometers mounted on the back to assess impact loading during jumping and landing tasks. Twelve participants were fitted with an accelerometer on their upper and lower back, before performing a continuous hopping task, as well as drop landings and rebound jumps from various heights (37.5, 57.5, and 77.5 cm) onto a force platform. Peak resultant acceleration (PRA) was low-pass filtered with four cut-off frequencies (8, 15, 20, and 50 Hz). Filtering of PRA with the 20 Hz cut-off frequency showed the highest correlations between ground reaction force (GRF) and PRA. PRA recorded at the upper back, filtered with a 20 Hz cut-off frequency, appears to provide a good estimate of impact loading for continuous hopping and rebound jumps, but less so for drop landings since correlations between GRF and PRA were only significant when landing from 57.5 cm.  相似文献   

17.
Abstract

This study seeks to discover whether handball goalkeepers employ a general anticipatory strategy when facing long distance throws and the effect of uncertainty on these strategies. Seven goalkeepers and four throwers took part. We used a force platform to analyse the goalkeeper's movements on the basis of reaction forces and two video cameras synchronised at 500 Hz to film the throw using 3D video techniques. The goalkeepers initiated their movement towards the side of the throw 193 ± 67 ms before the release of the ball and when the uncertainty was reduced the time increased to 349 ± 71 ms. The kinematics analysis of their centre of mass indicated that there was an anticipatory strategy of movement with certain modifications when there was greater uncertainty. All the average scores referring to velocity and lateral movement of the goalkeeper's centre of mass are significantly greater than those recorded for the experimental situation with bigger uncertainty. The methodology used has enabled us to tackle the study of anticipation from an analysis of the movement used by goalkeepers to save the ball.  相似文献   

18.
Abstract

The aim of this study was to characterize forearm muscle fatigue identified by the decrease in electromyogram median frequency and/or fingertip force during intermittent exercise. Nine elite climbers (international competitive level, USA 5.14a on sight) and ten non-climbers were instructed to maintain a fingertip force of 80% of their maximal voluntary contraction force on a dynamometer mimicking a rock climbing grip during a 5 s effort/5 s rest cycle for 36 repetitions (i.e. 6 min of exercise). Elite climbers lasted twice as long as non-climbers (climbers: 3 min; non-climbers: 1 min 30 s) before the force could no longer be maintained (i.e. the failure point). After this moment, fingertip force decreased and stabilized until the end of the exercise around 50% maximum voluntary contraction force in non-climbers and 63% in elite climbers. Electromyogram median frequency showed a greater decrease in non-climbers than in elite climbers before the failure point. No change in median frequency was observed after the failure point in elite climbers or in non-climbers. These results confirm that elite climbers are better adapted than non-climbers for performing the intermittent fingertip effort before the failure point. After this point, the better fingertip force of elite climbers suggests different forearm muscle properties, while the electromyography results do not provide any indication about the fatigue process.  相似文献   

19.
Abstract

Though clinical observations and laboratory data provide some support for the neuromuscular imbalance theory of the genesis of exercise-associated muscle cramps, no direct evidence has been published. The purpose of this study was to determine the effect of local muscle fatigue on the threshold frequency of an electrically induced muscle cramp. To determine baseline threshold frequency, a cramp was electrically induced in the flexor hallucis brevis of 16 apparently healthy participants (7 males, 9 females; age 25.1 ± 4.8 years). The testing order of control and fatigue conditions was counterbalanced. In the control condition, participants rested in a supine position for 30 min followed by another cramp induction to determine post-threshold frequency. In the fatigue condition, participants performed five bouts of great toe curls at 60% one-repetition maximum to failure with 1 min rest between bouts followed immediately by a post-threshold frequency measurement. Repeated-measures analysis of variance and simple main effects testing showed post-fatigue threshold frequency (32.9 ± 11.7 Hz) was greater (P < 0.001) than pre-fatigue threshold frequency (20.0 ± 7.7 Hz). An increase in threshold frequency seems to demonstrate a decrease in one's propensity to cramp following the fatigue exercise regimen used. These results contradict the proposed theory that suggests cramp propensity should increase following fatigue. However, differences in laboratory versus clinical fatiguing exercise and contributions from other sources, as well as the notion of a graded response to fatiguing exercise, on exercise-associated muscle cramp and electrically induced muscle cramp should be considered.  相似文献   

20.
This study aimed to investigate whether high peak ground reaction forces and high average loading rates are necessary to bowl fast. Kinematic and kinetic bowling data were collected for 20 elite male fast bowlers. A moderate non-significant correlation was found between ball speed and peak vertical ground reaction force with faster bowlers tending to have lower peak vertical ground reaction force (r = ?0.364, P = 0.114). Faster ball speeds were correlated with both lower average vertical and lower average horizontal loading rates (r = ?0.452, P = 0.046 and r = ?0.484, P = 0.031, respectively). A larger horizontal (braking) impulse was associated with a faster ball speed (r = 0.574, P = 0.008) and a larger plant angle of the front leg (measured from the vertical) at front foot contact was associated with a larger horizontal impulse (r = 0.706, P = 0.001). These findings suggest that there does not necessarily need to be a trade-off between maximum ball release speed and the forces exerted on fast bowlers (peak ground reaction forces and average loading rates). Furthermore, it appears that one of the key determinants of ball speed is the horizontal impulse generated at the ground over the period from front foot contact until ball release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号