首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Artistic gymnasts are frequently exposed to both low- and high-magnitude loads through impacts with the apparatus. These impact loads are thought to be associated with the high injury rates observed in gymnastics. Due to the variable apparatus and surfaces in gymnastics, impact loads during training are difficult to quantify. This study aimed to use triaxial accelerometers mounted on the back to assess impact loading during jumping and landing tasks. Twelve participants were fitted with an accelerometer on their upper and lower back, before performing a continuous hopping task, as well as drop landings and rebound jumps from various heights (37.5, 57.5, and 77.5 cm) onto a force platform. Peak resultant acceleration (PRA) was low-pass filtered with four cut-off frequencies (8, 15, 20, and 50 Hz). Filtering of PRA with the 20 Hz cut-off frequency showed the highest correlations between ground reaction force (GRF) and PRA. PRA recorded at the upper back, filtered with a 20 Hz cut-off frequency, appears to provide a good estimate of impact loading for continuous hopping and rebound jumps, but less so for drop landings since correlations between GRF and PRA were only significant when landing from 57.5 cm.  相似文献   

2.
We investigated joint coordination differences between Taekwondo back kicks and jumping back kicks, and how jumping (in performing the latter) would alter engaging ground reaction forces (GRF) in executing kicking. Ten skilful athletes volunteered to perform both kinds of kicking within the shortest time for three successful trials. Three high-speed cameras and two force platforms were used for data collection, and the trial with the shortest execution time was selected for analysis. Movements were divided into the rotation and attack phases. With comparable execution time and maximum joint linear/angular speeds, back kicks and jumping back kicks differ mainly in larger GRF in the latter, and in greater target acceleration in the former probably because the support leg prevented athletes’ rebounding after impact. In addition, more prominent antiphase and in-phase coordination between the shoulder segment and knee joint, and elongated rotation phase were found in jumping back kicks. Larger GRF values in jumping back kicks were generated for jump take-off rather than for a more powerful attack. In back kicks although the support leg remained ground contact, greatly decreased GRF in the attack phase suggested that the support leg mainly served as a rotation axis.  相似文献   

3.
Examining a countermovement jump (CMJ) force-time curve related to net impulse might be useful in monitoring athletes' performance. This study aimed to investigate the reliability of alternative net impulse calculation and net impulse characteristics (height, width, rate of force development, shape factor, and proportion) and validate against the traditional calculation in the CMJ. Twelve participants performed the CMJ in two sessions (48 hours apart) for test–retest reliability. Twenty participants were involved for the validity assessment. Results indicated intra-class correlation coefficient (ICC) of ≥ 0.89 and coefficient of variation (CV) of ≤ 5.1% for all of the variables except for rate of force development (ICC = 0.78 and CV = 22.3%). The relationship between the criterion and alternative calculations was r = 1.00. While the difference between them was statistically significant (245.96 ± 63.83 vs. 247.14 ± 64.08 N s, p < 0.0001), the effect size was trivial and deemed practically minimal (d = 0.02). In conclusion, variability of rate of force development will pose a greater challenge in detecting performance changes. Also, the alternative calculation can be used practically in place of the traditional calculation to identify net impulse characteristics and monitor and study athletes' performance in greater depth.  相似文献   

4.
The purpose of this study was to assess the effects of jumping distance on the landing mechanics after a volleyball spike, to help in injury prevention and training for safer landing. Ground reaction forces and three-dimensional kinematic data were collected from six male university right-handed volleyball players under “Normal” and “Long” jumping distance conditions of landing after a spike. The results revealed that the landings under the Long jumping distance condition produced significantly greater centre of gravity velocities and larger mean loading rates. Although data were collected for bilateral landings with the two feet contacting the force platform at the same time, landing motion was asymmetric and the left leg was considered to play a more critical role in the absorption of the landing impact. The trunk and hip positions at the initial contact with the floor and the range of motions of the knee and ankle were key kinematic parameters for reducing the vertical peak ground reaction forces and extending the time from the initial contact to the occurrence of this peak force, which consequently reduced the mean loading rate upon landing.  相似文献   

5.
6.
Lacrosse requires the coordinated performance of many complex skills. One of these skills is shooting on the opponents’ net using one of three techniques: overhand, sidearm or underhand. The purpose of this study was to (i) determine which technique generated the highest ball velocity and greatest shot accuracy and (ii) identify kinematic and kinetic variables that contribute to a high velocity and high accuracy shot. Twelve elite male lacrosse players participated in this study. Kinematic data were sampled at 250 Hz, while two-dimensional force plates collected ground reaction force data (1000 Hz). Statistical analysis showed significantly greater ball velocity for the sidearm technique than overhand (< 0.001) and underhand (< 0.001) techniques. No statistical difference was found for shot accuracy (P > 0.05). Kinematic and kinetic variables were not significantly correlated to shot accuracy or velocity across all shot types; however, when analysed independently, the lead foot horizontal impulse showed a negative correlation with underhand ball velocity (= 0.042). This study identifies the technique with the highest ball velocity, defines kinematic and kinetic predictors related to ball velocity and provides information to coaches and athletes concerned with improving lacrosse shot performance.  相似文献   

7.
ABSTRACT

This study examined the effects of shoe collar-height and counter-stiffness on ground reaction force (GRF), ankle and knee mechanics in landing. Eighteen university basketball players performed drop landing when wearing shoes in different collar height (high vs. low) and counter-stiffness (stiffer vs. less stiff). Biomechanical variables were measured with force platform and motion capturing systems. Two-way repeated measures ANOVA was performed with α = 0.05. Wearing high collar shoes exhibited smaller peak ankle dorsiflexion and total sagittal RoM, peak knee extension moment, but larger peak knee varus moment than the low collar shoes. Stiffer counter-stiffness shoes related to smaller ankle inversion at touchdown and total coronal RoM, but larger peak knee flexion and increased total ankle and knee sagittal RoM than the less stiff counter-stiffness. Furthermore, wearing stiffer counter-stiffness shoes increased forefoot GRF peak at high collar condition, while no significant differences between counter-stiffness at low collar condition. These results suggest that although higher collar height and/or stiffness heel counter used can reduce ankle motion in coronal plane, it would increase the motion and loading at knee joint, which is susceptible to knee injuries. These findings could be insightful for training and footwear development in basketball.  相似文献   

8.
Abstract

The lunge is regularly used in badminton and is recognized for the high physical demands it places on the lower limbs. Despite its common occurrence, little information is available on the biomechanics of lunging in the singles game. A video-based pilot study confirmed the relatively high frequency of lunging, ~15% of all movements, in competitive singles games. The biomechanics and performance characteristics of three badminton-specific lunge tasks (kick, step-in, and hop lunge) were investigated in the laboratory with nine experienced male badminton players. Ground reaction forces and kinematic data were collected and lower limb joint kinetics calculated using an inverse dynamics approach. The step-in lunge was characterized by significantly lower mean horizontal reaction force at drive-off and lower mean peak hip joint power than the kick lunge. The hop lunge resulted in significantly larger mean reaction forces during loading and drive-off phases, as well as significantly larger mean peak ankle joint moments and knee and ankle joint powers than the kick or step-in lunges. These findings indicate that, within the setting of this investigation, the step-in lunge may be beneficial for reducing the muscular demands of lunge recovery and that the hop lunge allows for higher positive power output, thereby presenting an efficient lunging method.  相似文献   

9.
Movement patterns during landing have been suggested to be related to injury risk. The purpose of this study was to determine the inter-session reliability of kinematic variables and ground reaction forces during landing in a population of male recreational athletes after a counter movement jump. Both unipodal and bipodal landings were evaluated. Furthermore, the possibility to improve landing reliability with a verbal instruction was also studied. Twenty-four male volunteers with no history of lower extremity trauma were randomly assigned to two groups (with and without verbal landing instruction). An optoelectronic 3D system and force plates were used to measure the lower limb joint angles and the ground reaction forces during landing. Intraclass correlation values show moderate to excellent inter-session reliability for the bipodal task (ICC average: 0.80, range: 0.46–0.97) and poor to excellent reliability for the unipodal task (ICC average: >0.75, range: 0.20–0.95). However, large standard errors of measurement values at the ankle joint at impact (27.6?±?11.5°) and for the vertical ground reaction forces (394?±?1091 N) show that some variables may not be usable in practice. The verbal instruction had a negative effect on the reliability of unipodal landing but improved the reliability of bipodal landing. These findings show that the reliability of a landing task is influenced by its motor complexity as well as the instruction given to the subject.  相似文献   

10.
Abstract

Dynamic postural stability has been widely studied for single-leg landing, but seldom considered for double-leg landing. This study aimed to evaluate the dynamic postural stability and the influence mechanism of muscle activities during double-leg drop landing. Eight recreationally active males and eight recreationally active females participated in this study and dropped individually from three heights (0.32?m, 0.52?m, and 0.72?m). Ground reaction force was recorded to calculate the time to stabilisation. Electromyographic activities were recorded for selected lower-extremity muscles. A multivariate analysis of variance was carried out and no significant influence was found in time to stabilisation between genders or limb laterals (P?>?0.05). With increasing drop height, time to stabilisation decreased significantly in two horizontal directions and the lower-extremity muscle activities were enhanced. Vertical time to stabilisation was not significantly influenced by drop height. Dynamic postural stability improved by neuromuscular change more than that required due to the increase of drop height. Double-leg landing on level ground is a stable movement, and the body would often be injured before dynamic postural stability is impaired. It is understandable to protect tissues from mechanical injuries by the sacrifice of certain dynamic postural stability in the design of protective devices or athlete training.  相似文献   

11.
This study investigated the effects of body mass and shoe midsole hardness on kinetic and perceptual variables during the performance of three basketball movements: (1) the first and landing steps of layup, (2) shot-blocking landing and (3) drop landing. Thirty male basketball players, assigned into “heavy” (n = 15, mass 82.7 ± 4.3 kg) or “light” (n = 15, mass 63.1 ± 2.8 kg) groups, performed five trials of each movement in three identical shoes of varying midsole hardness (soft, medium, hard). Vertical ground reaction force (VGRF) during landing was sampled using multiple wooden-top force plates. Perceptual responses on five variables (forefoot cushioning, rearfoot cushioning, forefoot stability, rearfoot stability and overall comfort) were rated after each movement condition using a 150-mm Visual Analogue Scale (VAS). A mixed factorial analysis of variance (ANOVA) (Body Mass × Shoe) was applied to all kinetic and perceptual variables. During the first step of the layup, the loading rate associated with rearfoot contact was 40.7% higher in the “heavy” than “light” groups (= .014) and 12.4% higher in hard compared with soft shoes (= .011). Forefoot peak VGRF in a soft shoe was higher (= .011) than in a hard shoe during shot-block landing. Both “heavy” and “light” groups preferred softer to harder shoes. Overall, body mass had little effect on kinetic or perceptual variables.  相似文献   

12.
The aim of this study was to determine the effect of two arm swing techniques, the simultaneous arm swing and the early arm swing, on vertical countermovement jump performance and on the contribution of the arms to vertical movement at the centre of mass (CM) during the propulsion phase. Participants were 28 athletes practicing sports in which the vertical jump constitutes a basic ability. Ground reaction forces were recorded by a force platform and the sagittal plane motion was recorded by a video camera. Although at take-off the vertical velocity (2.7 ± 0.2 m/s for simultaneous technique vs. 2.8 ± 0.2 m/s for early technique; p = 0.040) and position (1.18 ± 0.06 m for simultaneous vs. 1.17 ± 0.05 m for early; p = 0.033) of the CM were significantly different, no difference was observed in jump height (1.56 ± 0.01 m in both techniques). The arm action differed during the initial and final propulsion phases in both styles but the accumulated vertical contribution was similar. The practical implication in sports is that the use of the arm-swing technique to reach the maximum jump height should be determined by tactical demands instead of the technical execution of the arms.  相似文献   

13.
This study aimed to establish the reliability of a novel netball task using a single-leg horizontal jump (SLHJ). Twenty-five females 18–39 years performed SLHJs for maximal displacement and ground-reaction forces. Participants completed two trials for each leg on two occasions separated by 6 weeks of pre-season netball training. Paired sample t tests highlighted no significant differences within trials for either limb. Significant (p ≤ .05) changes are reported for displacement, and dominant and nondominant X and Y forces, after 6-week netball training. SLHJ displacement showed excellent within-session reliability at baseline for dominant (intraclass correlation coefficient (ICC(2,1)) = 0.922, 95% confidence interval (CI) 0.826–0.966) and nondominant (ICC(2,1) = 0.925; 95% CI 0.832–0.967) landings. At 6 weeks, within-session reliability remained excellent for dominant (ICC(2,1) = 0.967, 95% CI 0.926–0.985) and nondominant ICC 0.968 (95% CI 0.929–0.986) landings. The reliability of the single-leg horizontal jump task for netball remained strong after 6 weeks of netball training.  相似文献   

14.
The purposes of the study were to track weightlifters' barbell acceleration with a portable accelerometer over three training sessions to examine test–retest reliability and to compare peak barbell acceleration at different training intensities. Twelve nationally ranked weightlifters volunteered for this study. The portable accelerometer was attached to the right side of the barbell to measure barbell resultant acceleration during the snatch lift at a sampling frequency of 100 Hz. The data were collected over three training sessions at intensity levels of 80%, 85%, and 90% of one repetition maximum. The data were analyzed using intra-class correlation coefficients (ICCs) for the three training sessions and one-way repeated measure ANOVA to compare the difference in peak barbell acceleration at three intensities. Results showed that the device was highly reliable with an ICC of 0.88 and 95% confidence interval of 0.81–0.93. There were significant differences in peak barbell acceleration at various lifting intensities, indicating a decline of the acceleration as the mass of the barbell became heavier. The portable accelerometer seems useful in measuring barbell acceleration data, which can be analyzed in future studies to monitor a weightlifter's performance in a practical setting instead of testing at a laboratory.  相似文献   

15.
There is a need for reliable analysis techniques for kinetic data for coaches and sport scientists who employ athlete monitoring practices. The purpose of the study was: (1) to determine intra- and inter-rater reliability within a manual-based kinetic analysis program; and (2) to determine test-retest reliability of an algorithm-based kinetic analysis program. Five independent raters used a manual analysis program to analyse 100 isometric mid-thigh pull (IMTP) trials obtained from previously collected data. Each trial was analysed three times. The same IMTP trials were analysed using an algorithm-based analysis software. Variables measured were peak force, rate of force development from 0 to 50 ms (RFD50) and RFD from 0 to 200 ms (RFD200). Intraclass correlation coefficients (ICC) and coefficient of variation (CV) were used to assess intra- and inter-rater reliability. Nearly perfect reliability was observed for the manual-based (ICC > 0.92). However, poor intra- and inter-rater CV was observed for RFD (CV > 16.25% and CV > 32.27%, respectively). The algorithm-based method resulted in perfect reliability in all measurements (ICC = 1.0, CV = 0%). While manual methods of kinetic analysis may provide sufficient reliability, the perfect reliability observed within the algorithm-based method in the current study suggest it is a superior method for use in athlete monitoring programs.  相似文献   

16.
Ground reaction force and wire tensile force were measured during test throws by three hammer throwers: the Asian record holder, who had a personal best of 83.47 m at the time of the investigation, and two university athletes, with personal bests of 59.95 m and 46.30 m respectively. They were filmed using three high-speed video cameras (250 Hz). The displacements of the hammer head and the athletes' centres of mass were calculated using three-dimensional analysis procedures. The Asian record holder's centre of mass and the hammer head on the final two turns exhibited approximate conjunctions of the hammer high point and the thrower's low point and vice versa about the hammer's azimuth angle. It is conjectured that the reason why the thrower's movement is asynchronous with the hammer's movement by approximately half a turn is to accelerate the hammer head in a manner similar to the way that the amplitude of a pendulum increases when it is pulled upward by a string against the downward movement of the swinging weight.  相似文献   

17.
The purpose of the current study was to examine the effect of 6 weeks of whole body vibration training (WBVT) on body composition, muscle activity of the gastrocnemius and vastus lateralis, gastrocnemius muscle architecture (static and dynamic) and ground reaction forces (performance jump) during the take-off phase of a countermovement jump in young healthy adult males. A total of 33 men (23.31 ± 5.62 years) were randomly assigned to a whole body vibration group (experimental group, EGWBVT: n = 17; 22.11 ± 4.97 years) or a control group (CG: n = 16; 24.5 ± 6.27 years). The total duration of the intervention phase (WBVT) was 6 weeks with a frequency of 3 sessions per week. Statistically significant differences were observed (P ≤ 0.05) between pre- and post-test in the power peak (Δ 1.91 W · kg?1; P = 0.001), take-off velocity (0.1 cm · s?1; P = 0.002) and jump height (Δ 0.4 cm; P = 0.002) for EGWBVT. There were no statistically significant differences in any of the body composition and muscle architecture variables. Moreover, no significant differences were found between EGWBVT and CG nor changes in muscle activity during take-off phase of the gastrocnemius and vastus lateralis pre- versus post-training. This study suggests that a 6-week WBVT programme with increasing intensity improves jump performance but does not alter muscle activity nor muscle architecture in healthy young men.  相似文献   

18.
研究目的:观察高弓足和正常足在赤足行走过程中的运动学和动力学参数变化,分析高弓足易损伤的原因,为高弓足的康复治疗提供实验依据。研究方法:选取9名高弓足受试者为实验组,10名正常足受试者为对照组。利用Vicon-MX红外摄像系统进行动作捕捉,采集受试者常速行走时髋、膝、踝三大关节的运动学参数,同时利用KISTLER三维测力台采集行走过程中的足-地接触力。研究结果:在行走过程中,高弓足者髋关节在足趾离地时的外展角度小于正常足(P﹤0.05);在垂直方向上的第二峰值地面反作用力(GRF)两组间差异存在统计学意义(P﹤0.05),垂直方向的第一、第二峰值GRF和向后方向上的峰值GRF出现的时间均早于正常足(P﹤0.05)。结论:高弓足与正常足行走时所表现出的差异性可能是造成高弓足易损伤的原因,也反映了它们控制机制的不同。  相似文献   

19.
中外体育场地比较研究   总被引:6,自引:1,他引:5  
根据“五普”的详实数据来描述现阶段我国与发达国家,以及与我国处于同一个水平的发展中国家的体育场地和体育场地政策等方面的总体状况,分析我国与发达国家、发展中国家在体育场地状况与发展政策等方面的异同,发现我国体育场地建设和发展中存在的问题,提出体育场地建设和发展对策建议,为我国的体育场地建设合理布局提供对策依据,为顺利实施《奥运争光计划》和《全民健身计划》,深化体育改革提供可靠资料。  相似文献   

20.
爆发力的力学分析和训练探讨   总被引:6,自引:0,他引:6  
根据生物力学、生理学原理,认为爆发力是机体在克服一定阻力的条件下,在极短的时间内发挥出最大的肌张力,是一种力量的加速度,用力的时间梯度加以评定更为合理;并对影响爆发力主导因素进行分析,提出爆发力训练的注意事项,为促进爆发力的训练提供参考依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号