首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computational thinking (CT) is a way of making sense of the natural world and problem solving with computer science concepts and skills. Although CT and science integrations have been called for in the literature, empirical investigations of such integrations are lacking. Prior work in natural selection education indicates students struggle to explain natural selection in different contexts and natural selection misconceptions are common. In this mixed methods study, secondary honors biology students learn natural selection through CT by engaging in the design of unplugged algorithmic explanations. Students learned CT principles and practices and applied them to learn and explain the natural selection process. Algorithmic explanations were used to scaffold transfer of natural selection knowledge across contexts through investigation of three organisms and the creation of generalized natural selection algorithms. Students' pre- and post-unit algorithmic explanations of natural selection were analyzed to answer the following research questions: (a) How do students' conceptions of natural selection change over the course of a CT focused unit? (b) What is the relationship between CT and natural selection in students' algorithmic explanations? (c) What are students' perspectives of learning natural selection with CT? Results indicate students' conceptions of natural selection increased and natural selection misconceptions decreased over the course of the unit. Within their post-unit algorithmic explanations, students used specific CT principles in conjunction with natural selection concepts to explain natural selection, which helped them to learn the details of the natural selection process and correct their natural selection misconceptions. Students indicated the use of CT in unplugged algorithmic explanations in different contexts helped them learn natural selection. This study shows unplugged CT can be used to teach students science content, and it provides an example for further CT and science integrations. Implications for the field are discussed.  相似文献   

2.
Antibiotic resistance (ABR) is a significant contemporary socio-scientific issue. To engage in informed reasoning about ABR, students need to understand natural selection. A secondary science unit was designed and implemented, combining an issues-based approach and model-based reasoning, to teach students about natural selection and ABR. This sequential explanatory mixed methods study explored students’ explanations of natural selection. Students created model-based explanations (MBEs) about ABR and verbally explained generalised natural selection during semi-structured interviews. Students’ MBEs significantly increased in natural selection content, and misconceptions about natural selection and ABR significantly decreased after the unit. However, students’ explanations of generalised natural selection differed from ABR explanations. Students struggled to include mutation as the cause of initial variation when explaining generalised natural selection, whereas students included mutation when explaining ABR but often did so after selection pressure. Qualitative analysis indicated students correctly explained ABR or correctly explained generalised natural selection, but none correctly explained both. Students who did understand ABR struggled to apply their understanding to a context other than ABR. This study demonstrates contextual differences in students’ natural selection ideas and provides implications for natural selection instruction. While ABR is a compelling issue to contextualise natural selection instruction, it may be problematic.  相似文献   

3.
It is now widely acknowledged that students' misconceptions in science impede their meaningful understanding of and good performance in the subject. A search in the literature reveals that textbooks, reference books, teachers, language, cultural beliefs and practices are some principal sources of high school students' misconceptions of many science concepts in biology. In this paper, some misconceptions students hold in biology, which originate from each of these sources, are reviewed using cognate studies and published documents. The implications of the conclusions from the review for biology education are addressed.  相似文献   

4.
Students’ and teachers’ misconceptions are an international concern among researchers in science education; they influence how students learn and teachers’ teach knowledge and are a hindrance in the acquisition of accurate knowledge. This paper reports on a literature synthesis of existing research about ecological misconceptions. One means of improving the application of misconceptions involves using diagnostic tests. These form an important component of a broader conceptual toolkit needed to teach science in conceptually accurate ways. Analysis of the results of a diagnostic test, completed by biology students and pre-service teachers in Ireland, revealed the presence of an unacceptably high level of misconceptions and uncovered flaws in students and teachers’ understanding of ecological concepts. A clear link was observed between the misconceptions present in pre-service teachers’ knowledge base and those dominant in students. In this regard, we discuss implications of these findings for teacher education, from pre-service to continuing education.  相似文献   

5.
Teachers and students struggle with the complexities surrounding the evolution of species and the process of natural selection. This article examines how science teacher candidates (STCs) engage in a clinical simulation that foregrounds two common challenges associated with natural selection—students’ understanding of “survival of the fittest” and the variation of species over time. We outline the medical education pedagogy of clinical simulations and its recent diffusion to teacher education. Then, we outline the study that situates each STC in a one-to-one interaction with a standardized student who is struggling to accurately interpret natural selection concepts. In simulation with the standardized student, each STC is challenged to recognize content misconceptions and respond with appropriate instructional strategies and accurate explanations. Findings and implications center on the STCs’ instructional practices in the simulation and the use of clinical learning environments to foster science teacher learning.  相似文献   

6.
Misconceptions about science are often not corrected during study when they are held with high confidence. However, when corrective feedback co-activates a misconception together with the correct conception, this feedback may surprise the learner and draw attention, especially when the misconceptions are held with high confidence. Therefore, high-confidence misconceptions might be more likely to be corrected than low-confidence misconceptions. The present study investigates whether this hypercorrection effect occurs when students read science texts. Effects of two text formats were compared: Standard texts that presented factual information, and refutation texts that explicitly addressed misconceptions and refuted them before presenting factual information. Eighth grade adolescents (N = 114) took a pre-reading test that included 16 common misconceptions about science concepts, rated their confidence in correctness of their response to the pre-reading questions, read 16 texts about the science concepts, and finally took a post-test which included both true/false and open-ended test questions. Analyses of post-test responses show that reading refutation texts causes hypercorrection: Learners more often corrected high-confidence misconceptions after reading refutation texts than after reading standard texts, whereas low-confidence misconceptions did not benefit from reading refutation texts. These outcomes suggest that people are more surprised when they find out a confidently held misconception is incorrect, which may encourage them to pay more attention to the feedback and the refutation. Moreover, correction of high-confidence misconceptions was more apparent on the true/false test responses than on the open-ended test, suggesting that additional interventions may be needed to improve learners' accommodation of the correct information.  相似文献   

7.
ABSTRACT

Research suggests that it is challenging for elementary students to develop conceptual understanding of trait variation, inheritance of traits, and life cycles. In this study, we report on an effort to promote elementary students’ learning of hereditary-related concepts through scientific modelling, which affords opportunities for elementary students to generate visual representations of structure and function associated with heredity. This study is part of a four-year design-based research project aimed at supporting students’ learning about life science concepts using corn as a model organism. Study data were collected during the implementation of a project-developed, multi-week, model-based curriculum module in eight third-grade classrooms located in the Midwestern United States. Through mixed methods research, we analysed video recorded observations of curriculum implementation, student artefacts, and student interviews. Results illustrate epistemic dimensions of model-based explanations (MBEs) for heredity that students prioritised, as well as significant variation in students’ MBEs in 2 of the 8 classrooms. While findings show neither students’ content knowledge nor model-based instruction associated with their MBEs, qualitative differences in teachers’ curriculum enactment, and more general approaches to science instruction, may help explain observed differences. Implications are discussed for curriculum and instruction in support of students’ MBE for heredity-related concepts.  相似文献   

8.
We propose a process of contextualization based on seven empirically derived contextualization principles, aiming to provide opportunities for Indigenous Mexican adolescents to learn science in a way that supports them in fulfilling their right to an education aligned with their own culture and values. The contextualization principles we empirically derived account for Nahua students' cultural cognition, socialization, and cultural narratives, thus supporting Indigenous students in navigating the differences between their culture and the culture and language of school while learning complex science concepts such as natural selection. The process of curricular contextualization we propose is empirically driven, taking culture and socialization into account by using multiples sources (cognitive tasks to explore teleology, ethnographic observation of students' community and classroom, and interviews with students and community members) and builds on the scholarship in Culturally Relevant Pedagogy and Indigenous Education. We used these principles to redesign a middle school biology unit on natural selection to make it more culturally relevant for Nahua students. The enactment of this unit resulted in students being engaged in science learning and achieving significant learning gains. The significance of this study lies in presenting evidence that learning science in culturally relevant ways supports the learning of challenging biology concepts. We provide evidence that Western science can be learned in ways that are more aligned with Indigenous students' Traditional Indigenous Knowledge, thus informing the implementation of educational policies aiming to improve the quality of secondary education for Indigenous adolescents. Our proposed contextualization principles can benefit students of all cultural identities who feel that their religion, language, or traditional knowledge are not aligned with school science, facilitating their access to culturally relevant science education.  相似文献   

9.
Abstract

This study assessed 4th, 8th, and 11th grade students' understanding of natural and social science concepts related to pollution. A representative sample of public school students (n = 105) in 11 Maine schools was selected, and students were interviewed on four concept principles considered critical to a full understanding of the pollution problem. The concept of pollution included the much publicized issues of solid and toxic waste as well as air, soil, and water pollution. Research assertions were summarized in generalized correct concept statements indicating the extent of current student knowledge. Common misconceptions were also noted.

This study considered student understanding from a human ecological perspective, that is, as an integrated set or cluster of concepts related to pollution. This reflects a complex, integrated, and multidisciplinary conception of natural phenomena. Human constructivism, meaningful learning theory, and principles related to the relevance of student schema in the design of curriculum and instructional strategies guided this work.

The results of this study have implications for teaching about pollution and the design of science education curriculum materials based upon student knowledge. This information can guide teaching strategies concerning current environmental problems and thus help learners gain an appreciation for the complex and multi-disciplinary nature of science, technology, and society and how they affect the environment.  相似文献   

10.
Educational videos on the Internet comprise a vast and highly diverse source of information. Online search engines facilitate access to numerous videos claiming to explain natural selection, but little is known about the degree to which the video content match key evolutionary content identified as important in evolution education research. In this study, we therefore analyzed the content of 60 videos accessed through the Internet, using a criteria catalog with 38 operationalized variables derived from research literature. The variables were sorted into four categories: (a) key concepts (e.g. limited resources and inherited variation), (b) threshold concepts (abstract concepts with a transforming and integrative function), (c) misconceptions (e.g. that evolution is driven by need), and (d) organismal context (e.g. animal or plant). The results indicate that some concepts are frequently communicated, and certain taxa are commonly used to illustrate concepts, while others are seldom included. In addition, evolutionary phenomena at small temporal and spatial scales, such as subcellular processes, are rarely covered. Rather, the focus is on population-level events over time scales spanning years or longer. This is consistent with an observed lack of explanations regarding how randomly occurring mutations provide the basis for variation (and thus natural selection). The findings imply, among other things, that some components of natural selection warrant far more attention in biology teaching and science education research.  相似文献   

11.
Abstract

This study assessed the level of scientific and natural resource knowledge that fourth-, eighth-, and eleventh-grade students in Maine possess concerning acidic deposition. A representative sample of public school students (N = 175) was interviewed on twelve concept principles considered critical to a full understanding of the acidic deposition problem. These included geological, meteorological, ecological, political, and economic concepts. Student knowledge was rated for each concept principle on a scale of complete, high partial, low partial, or no understanding. Common misconceptions were also noted. Generalized correct concept statements of current student knowledge are reported, as well as generalized missing concepts. Our conclusions have implications for teaching about acidic deposition and the design of environmental education curriculum materials based upon student knowledge. This information can help teachers better instruct students about current environmental problems and thus help learners gain an appreciation for the complex and multidisciplinary nature of science and the environment.  相似文献   

12.
This paper explores the effectiveness of using ‘structured examples in concert with prompting reflective questions’ to address misconceptions held by mechanical engineering students about thermodynamic principles by employing pre-test and post-test design, a structured questionnaire, lecture room observation, and participants’ interviews. Students’ misconceptions were identified through pre-tests that evaluated students’ understanding of the chosen concepts, while conceptual change was assessed in pre-test–post-test design that revealed students’ ability to apply the concepts and transfer skills from a worked example to satisfactorily undertake a fairly complex similar problem. The use of worked examples in concert with prompting reflective questions is effective for inducing correct conceptual change and effective problem-solving skills. However, it is recommended that engineering tutors should incorporate inquiry-based learning approach and computer simulations alongside the use of worked examples with prompting reflective questions in order to enhance students’ conceptual understanding of thermodynamic concepts.  相似文献   

13.
We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed for use as a pre- and posttest to measure student learning gains. To develop the assessment, we first worked with faculty to create a set of learning goals that targeted important concepts in the field and seemed likely to be emphasized by most instructors teaching these subjects. We interviewed students using open-ended questions to identify commonly held misconceptions, formulated multiple-choice questions that included these ideas as distracters, and reinterviewed students to establish validity of the instrument. The assessment was then evaluated by 25 biology experts and modified based on their suggestions. The complete revised assessment was administered to more than 1300 students at three institutions. Analysis of statistical parameters including item difficulty, item discrimination, and reliability provides evidence that the IMCA is a valid and reliable instrument with several potential uses in gauging student learning of key concepts in molecular and cell biology.  相似文献   

14.
Students in introductory biology courses frequently have misconceptions regarding natural selection. In this paper, we describe six activities that biology instructors can use to teach undergraduate students in introductory biology courses how natural selection causes evolution. These activities begin with a lesson introducing students to natural selection and also include discussions on sexual selection, molecular evolution, evolution of complex traits, and the evolution of behavior. The set of six topics gives students the opportunity to see how natural selection operates in a variety of contexts. Pre- and postinstruction testing showed students’ understanding of natural selection increased substantially after completing this series of learning activities. Testing throughout this unit showed steadily increasing student understanding, and surveys indicated students enjoyed the activities.  相似文献   

15.
The present study was conducted to investigate the degree of effectiveness of cooperative learning instruction over a traditional approach on 11th grade students' understanding of electrochemistry. The study involved forty-one 11th grade students from two science classes with the same teacher. To determine students' misconceptions concerning electrochemistry, the Electrochemistry Concept Test consisting of 8 open-ended and 12 multiple-choice questions was used as a pre-test and some students were interviewed. According to the results, twenty-four misconceptions (six of them initially identified) about electrochemistry were identified. The classrooms were randomly assigned to a control group (traditional instruction, 21 students) and an experimental group (cooperative learning based on a constructivist approach, 20 students). After instruction, the same test was administered to both groups as a post-test. The results from the t-test indicated that the students who were trained using cooperative learning instruction had significantly higher scores in terms of achievement than those taught by the traditional approach. According to the post-test and interviews, it was also found that instruction for the cooperative group was more successful in remediation of the predetermined misconceptions.  相似文献   

16.
Nuclear science has uses and applications that are relevant and crucial for world peace and sustainable development, so knowledge of its basic concepts and topics should constitute an integral part of civic scientific literacy. We have used two newspaper articles that deal with uses of nuclear science that are directly relevant to life, society, economy, and international politics. One article discusses a new thermonuclear reactor, and the second one is about depleted uranium and its danger for health. 189 first-year undergraduate physics and primary education Greek students were given one of the two articles each, and asked to answer a number of accompanying questions dealing with knowledge that is part of the Greek high school curriculum. The study was repeated with 272 first-year undergraduate physics, physics education, science education, and primary education Turkish students. Acceptable or partially acceptable answers were provided on average by around 20 % of Greek and 11 % of Turkish students, while a large proportion (on the average, around 50 % of Greek and 27 % of Turkish students) abstained from answering the questions. These findings are disappointing, but should be seen in the light of the limited or no coverage of the relevant learning material in the Greek and the Turkish high-school programs. Student conceptual difficulties, misconceptions and implications for research and high school curricula are discussed.  相似文献   

17.
分析赣南师范学院科学教育专业04、05、06级基础生物学课程开设现状,通过比较部分师范院校科学教育专业开设基础生物学课程的情况,以及对中学科学标准、中学生物学课程标准、高等学校本科生物科学专业规范教学内容的比较,对科学教育专业学生应掌握的生物学基本知识进行了分析,对科学教育专业开设的基础生物学课程进行了认真分析研究,初步构建适合科学教育专业特点的基础生物学的课程体系.  相似文献   

18.
This paper examines the continuation of a study investigating senior secondary students' understanding of concepts in biology. In this study, year 11 student understandings of natural selection were examined by questionnaire using different question formats. The SOLO taxonomy of Biggs and Collis (1982) was used as the theoretical framework with which the quality of student learning was assessed. This paper puts forward the usefulness of the SOLO taxonomy in assessing student understanding in biology in general and in examining student understanding of the concept of natural selection in particular. The paper goes on to examine the implications of these results and raises issues which have applicability to criterion-based assessment in secondary science. Specializations: science and technology education, biology teacher education, applications of multimedia to science education  相似文献   

19.
Developing an understanding of the nature of food webs is an important topic in today's biology curricula. The relationships represented in a food web are rule-like in nature. Hence, it should be possible to construct a learning hierarchy for this concept. A hierarchy leading to the ability to determine how a change in the size of one population can affect another population in the same web but not on the same chain was hypothesized. Data from 200 subjects were extremely consistent with the hierarchy. A second major focus related to the identification of specific misconceptions held by subjects for food webs. The need to identify students' misconceptions of important concepts has been expressed widely in the recent science education literature. In the present article, an argument is presented for the usefulness of learning hierarchies in this work. Specific misconceptions and the frequencies of their occurrence are reported.  相似文献   

20.
In this paper we present a schematic overview of the central concepts in evolutionary theory, setting them off against the background of widespread misconceptions about them. Our aim is to provide high school teachers with (1) an overview of those particular concepts that they can expect students to have difficulties with, (2) a comparison of students’ alternative conceptions with the corresponding accepted scientific concepts and (3) some recommendations for teaching these concepts. We aim to improve the learning and teaching of evolution by making the relevant conceptual debates within the fields of history and philosophy of science more accessible to science teachers. We intended this conceptual analysis to be of use as a teaching tool for in-service teachers, as well as biology teachers in training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号