首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
在高二数学“复数”这一章的学习中,如何在复平面内求动点Z的轨迹方程是复数知识的一个重点,也是一个难点.在复平面内,动点对应的是一对变化的实数,动点轨迹是实数方程f(x,y)=0;而在复平面内,动点对应的是一个变化的复数,动点轨迹的复数方程是f(z)=0.这两个方程在本质上是完全一致的,都是以数表示点,以方程表示曲线,但在形式上并不相同,所以在复平面内求点Z的轨迹可以利用、借鉴实平面内求轨迹的方法,还可以利用复数所具有的特殊性质另辟蹊径.下边略举几例说明求轨迹复数方程的一些方法.  相似文献   

2.
在平面解析几何中,求曲线的方程常常用到代人法.所谓代人法是指:如果曲线轨迹的动点M(x,y)依赖于另一动点N(x0,y0),而点N(x0,y0)又在某已知曲线,(x,y)=0上,则可先根据已知条件列出关于x、y、x0、Y0的方程组,利用x、y表示出。  相似文献   

3.
我们先看一个例题 :例 1 已知动点 P在上半圆 x2 y2 =1(y≥ 0 )上运动 ,定点 Q(2 ,0 ) ,线段 PQ绕点Q顺时针旋转 90°到 QR,求动点 R的轨迹以及 R到圆心 O的距离的最大值和最小值 .这类问题的解法较多 ,较常规也较简单的解法是“复数法”:图 1先把圆方程改写成复数方程 :| z|= 1 ,设动点 P,R的复数为 z P,z R,定点 Q的复数为 z Q= 2 .再利用复数的向量旋转性质可得关系式 :(z R- z Q) i=z P- z Q,解得 z P=(z R- z Q) i z Q,代入圆的复数方程得| (z R- z Q) i z Q| =1 ,代入相关数据 ,并设动点 R(x,y) ,化为普通方程即是(x…  相似文献   

4.
复数是中学代数的重要内容之一,复数沟通了代数、三角、平几、解几等各部分数学知识,因此处理复数问题时方法十分灵活,一个题常可有多种解法。如常见的,求复数 Z 在复平面上对应的点的轨迹(或求|Z|的最值)时,常设 Z=x yi(x,y∈R),将 x,y 表成同一参数的解析式,再消去其中参数,得到平面解几中关于 x,y 的普通方程,这时不难画出其图形,也不难直接从图形得出|Z|的最值;如果题目条件中已知某复数|Z_0|=r 甚至|Z_0|=1,这时一般采用三角形式 Z_0=r(cosθ tsinθ)更为方便(这时常需研究 r,θ的关系)。  相似文献   

5.
有些同学求轨迹方程时,直接就写出有关x、y的关系式,这是不严密的,应该是先设所求轨迹上的动点坐标为(x,y),再根据题意列方程,尤其是题目中有多个动点时,一般设所求轨迹上的动点坐标为(x,y),其他动点的坐标为(x1,y1)或(x0,y0)等。  相似文献   

6.
题目如图1,设λ〉0,点A的坐标为(1,1),点B在抛物线y=x^2上运动,点Q满足→(BQ)=λ →(QA),经过Q点与x轴垂直的直线交抛物线于点M,点P满足→(QM)=λ →(MP),求点P的轨迹方程。分析本题主要考查直线和抛物线方程,平面向量的概念、性质及运算,动点轨迹方程等基本知识,考查灵活运用所学知识探究问题和解决问题的能力,全面考查考生的数学综合素养  相似文献   

7.
全日制普通高级中学教科书(必修)《数学》第二册(上)(以下简称教科书)P89.10.题目求当点(x,y)在以原点为圆心,a为半径的圆周上运动时,点(x y,xy)的轨迹方程.经研究发现,题目解法丰富,意义广泛,可推广为解决诸多问题的通法.解法1:由已知,圆方程为x2 y2=a2,P(x0,y0)是圆上的点,Q(  相似文献   

8.
2011年高考数学安徽卷理科第21题:设λ>0,点A的坐标为(1,1),点B在抛物线y=x2上运动,点Q满足BQ→=λQA→,经过点Q与x轴垂直的直线交抛物线于点M,点P满足QM→=λMP→,求点P的轨迹方程.本题设计新颖,主要考查直线和抛物线的方程,动点的轨迹方程,平面向量的概念、性质、运  相似文献   

9.
1.问题的提出 我们来看下列问题的举例及解答。 例1 设第一象限内的曲线y=y(x)对应于0≤X≤a一段的长等于曲边梯形0≤y≤y(x),0≤x≤a的面积,a>0是任给的,y(O)=1,求y(X) (参注释[2]p32.11.5131) 编者在答案与提示中给出; y=chx 例2 在上半平面求一条向上凹的曲线,其上任一点P(x.y)处的曲率等于此曲线在该点的法线段PQ长度的倒数(Q是法线与x轴的交点)。且曲线在点(1,1)处的切线与x轴平行。(参注释[2]P317,11.5.5全国硕士研究生统考题) 解:曲线y=y(x)在点(x,y)处的法线方程是  相似文献   

10.
教材(人教版)对于导数的几何意义是这样叙述的:“函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0)处的切线的斜率,也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f(x0)。相应地,切线方程为y-y0=f’(x0)(x-x0)。”因此,我们有了求切线方程的方法。  相似文献   

11.
题目:(2010上海理23)已知椭圆Γ的方程为x2/a2+y2/b2=1(a〉b〉0),点P的坐标为(-a,b).(1)若直角坐标平面上的点M,A(0,-b),B(a,0)满足PM=1/2(PA+PB),求点M的坐标;(2)设直线l2:y=k1x+p交椭圆Γ于C,D两点,  相似文献   

12.
江苏版高中数学选修1-1课本第45页,有这样一道例题: 已知点P(x,y)到定点F(c,0)的距离与它到定直线L:x=a^2/c的距离的比是常数c/a(a〉c〉0),求点P的轨迹.  相似文献   

13.
一、从直观图形分析轨迹范围例1.如图1直角△ABC的两直角边分别是a,b(a>b),A,B两点分别在x轴正半轴和y轴的正半轴上滑动,求顶点C的轨迹方程.解:设C(x,y),由点O,A,C,B共圆,知∠COA=∠CBA,∴xy=ab,即y=bx.a从直观分析,易知C点的轨迹不是一条直线.考察A、B处于两极端的位置时C点的坐标.当A重合于原点时,C点横坐标x=aba2+b2√;当B重合于原点时,C点横坐标x=a2a2+b2√.故C点的轨迹方程应是y=bax,aba2+b2√≤x≤a2a2+b2√).二、从参数变化分析轨迹范围例2.已知关于x的二次方程x…  相似文献   

14.
杜卫平 《天中学刊》1999,14(5):103-104
曲线是适合某种条件的点的集合(轨迹).已知曲线如何求曲线的方程,是解析几何主要课题之一.由于建立了坐标系,使作为几何形象的点与代数形式的坐标在一定条件下建立了—一对应.这样适合某种条件的点的集合(轨迹),反映到代数上,就是点的坐标(x,y),满足某一方程f(x,y)=0,求动点的轨迹方程,就是要求动点坐标所满足的关系式.求点的轨迹方程的一般步骤是:①设点.根据题意建立适当的坐标系,并设曲线上动点M的坐标为(x,y).②列式.根据已知条件,列出M的坐标所满足的等式.③代换.将点M的坐标代入②中的等广,得到含…  相似文献   

15.
题目如图1,已知双曲线C:x^2/a^2-y^2=1(a〉0)的右焦点为F,点A,B分别在C的两条渐近线上,AF⊥x轴,AB⊥OB,BF//OA(O为坐标原点). (1)求双曲线C的方程; (2)过C上一点P(x0,y0)(y0≠0)的直线l:x0x/a2-y0y=1与直线AF相交于点M,与直线x=3/2相交于点N,证明:当点P在C上移动时,|MF|/|NF|恒为定值,并求此定值.  相似文献   

16.
《考试》1998,(Z1)
求曲线c关于定直线l的对称曲线方程,或者求曲线c关于定点M的对称曲线方程,这一类问题都可以用轨迹法解决。若给定曲线c的方程F(x,y)=0及直线l的方程Ax By c=0,求曲线c关于l的对称曲线c′的方程,可设c′上一动点P(x,y),P点关于l的对称点Q(x_0,y_0)在曲线c上,由于P、Q关于l对称,故P、Q连线斜率  相似文献   

17.
由于复数内容综合性强,复数问题的解法一般具有可选择性.结合复数及其运算的几何意义,许多复数问题可从其几何意义入手分析,利用数形结合的方法加以解决.本文意在对通过以下几个方面数形结合解复数题的基本思路,作进一步阐述,一、利用复数的几何表示解题复数Z=a+bi(a,bR)与复平面内的点P(a,b)是—一对应的,这就为通过图形直观地求解有关复数问题提供了依据.例求下列复数的三角式:一般地,设Z=a+bi,其三角形式是:(Ⅰ)若a>0,b>O,则(Ⅱ)若a>O,b<0,则(Ⅲ)若a<o,b<o,则二、利用复数的向量表示及复数…  相似文献   

18.
求点P(x0,y0)关于直线l:Ax+by+C=0的对称点Q(x1,y1)的坐标,文给出了公式:  相似文献   

19.
一、有关圆锥曲线中点弦的斜率问题此类问题常设弦的两端点坐标为(x1,y1)、(x2,y2),分别代入圆锥曲线方程后,设法变换出表示弦的斜率的式子,从而使问题获解。例:已知直线L交椭圆于M、N两点,B(0,4)为椭圆与y轴正方向的交点。若△BNM的重心恰重合于椭圆的右焦点.试求L的方程如(图1)分析:解答本题的关键是求点P的坐标和前线L的斜率。注意到P是MN的中点,因此这是一个与中点弦斜率有关的问题。P(3,-2),设M(x1,y1),N(x2,y2)代入椭圆方程后相减:4(x1+x2)(x1-x2)+5(y1+y2)(y1-y2)=0L的方程为…  相似文献   

20.
贵刊文[1]给出了直线x0^x+y0y=r^2与x^2+y^2=r^2圆的关系:结论1 已知圆O:x^+y^2=r^2,点P(x0,y0).(1)若点P(x0,y0)在圆上,过点P的圆切线方程为x0x+y0y=r^2;(2)若点P(x0,y0)在圆外,过点P向圆引两条切线,两切点A、B两点,过A、B两点的两条切线交点的轨迹方程为x0x+y0y=r^2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号