首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
若x≥0,则x=x2~(1/2)这是同学们都非常熟悉一个十分简单的结论,正因为它简单,才使得同学们对此重视不够.其实,它在高中数学中有着不少的应用.下面我们就利用此结论来处理几个最值问题,供同学们参考.  相似文献   

2.
在曲线的极坐标方程化到曲线的直角坐标方程时,常用到ρ~2=x~2+y~2。故ρ=±(x~2+y~2)~(1/2)。怎样确定“+”、“-”号?现在举例说明如下: 1.用ρ=(x~2+y~2)~(1/2)的情况。例1.化极坐标方程e~ρ=2+cosθ为直角坐标方程。解.因为2+cosθ≥1,所以原方程中ρ≥0,因此ρ=(x~2+y~2)~(1/2)。由e~ρ=2+cosθ得ρe~ρ=2ρ+ρcosθ。从而原方程可化为 (x~2+y~2)~(1/2)e~((x~2+y~2)~(1/2))=2(x~2+y~2)~(1/2)+x。例2.把极坐标方程ρ=1+cosθ化为直角坐标方程。  相似文献   

3.
灵活运用代数式x~2 xy y~2及其三个变形式x~2 xy y~2=(x (y/2))~2 (3~(1/3)y)~2≥0,x~ xy y~2=x~2 y~2-2xycos120°,x~2 xy y~2=(x-y)~2 3xy≥3xy能使某些问题化生为熟、化难为易,现以高考、竞赛题为例说明如下。  相似文献   

4.
用代数方法求y=(x~2-2x 5)~(1/2)±(x~2-4x 13)~(1/2)的值域非常繁难.如果仔细观察,此题可以写成y=[(x-1)~2 (0-2)~2]~(1/2)±[(x-2)~2 (0-3)~2]~(1/2)的形式,故可转化为求动点P(x,0)到定点A(1,2)和B(2,3)的距离之差(和)的取值范围问题,这样就能借助于解析几何有关知识加以解决。此类问题就是求  相似文献   

5.
求函数f(x,y)=x~2 y~2在条件x y=1下的最小值,通常有如下几种解法: 解法一 应用一元函数的配方法 由条件x十y=1,得y=1—x,将其代入f(x,y)=x~2 y~2,得到一元函数 f(x)=x~2 (1—x)~2=2x~2-2x 1=2(x-1/2)~2 1/2(1)因为(x-1/2)~2≥0,故由(1)式知,当x=1/2时,函数f(x)取最小值。将x=1/2代入y-1—x,得y=1/2。因此,当x=1/2,y=1/2时,函数f(x,y)-x~2 y~2在条件x y=1下取最小值(1/2)~2  相似文献   

6.
1 引例解不等式(x-4)(x~2-3x-4)~(1/2)≥0.在一次练习中,几乎所有同学均采用如下解法:原不等式等价于不等式组(?)解之得 x≥4,故原不等式解集为{x|x≥4}.显然,当 x=-1时,原不等式也能成立,因此,以上解答错了.2 探讨一  相似文献   

7.
引理不定方程x~2-y~2=c(c∈Z)有整数解的充要条件是c■2(mod4)。证:必要性。若存在整数x、y使x~2-y~2=c■(x y)(x-y)=c,∵x y、x-y同奇偶,∴c是奇数,或者4|c,故c■2(mod4)。充分性。设c■2(mod4),则ⅰ)c≡0(mod4),c/4 1,c/4-1∈z,而(c/4 1)~2-(c/4-1)~2=c,即x~2-y~2=c有整数解(c/4 1,c/4-1)。ⅱ) c≡1(mod4)或c≡3(mod4),(c 1)/2,(c-1)/2∈Z,((c 1)/2)~2-((c-1)/2)~2=c,方程x~2-y~2=c有整数解((c 1)/2,(c-1)/2)。引理证毕。对不定方程x_1~2 x_2~2 … x_n~2=x_(n 1)~2,若令x_i  相似文献   

8.
一元二次方程 x~2-5~(1/2)x 1=0的根是(5~(1/2)-1)/(2)与(5~(1/2) 1)/(2),这是众所周知的。但其根有何性质?又有什么用途?这是非常值得研究的。本文就这两个问题作一些初步探讨。为了研究方便起见,不妨设α=(5~(1/2)-1)/(2),β=(5~(1/2) 1)/(2)。  相似文献   

9.
题目所示函数f(x)在λ_1>0,λ_2>0,α相似文献   

10.
一元二次方程ax~2+bx+c=0(a≠0)有实根的充要条件是判别式△=b~2-4ac≥0,这里a、b、c是与未知数x无关的常数,对于象 1.求x~2+2xsin(xy)+1=0的一切实数解. 2.求x~2-2xsin(π/2)x+1=0的所有实根. 3.证明2sinx=5x~2+2x+3无实数解. 之类问题,是不是也可以应用类似的判别式来解呢?直接应用一元二次方程的根的判别式来解是缺乏理论根据的,本文给出这类问题的一般形式  相似文献   

11.
例1 x为实数,求x~4+4x+4的最小值.解原式=(x~4-2x~2+1)+(2x~2+4x+2)+1 =(x~2-1)~2+2(x+1)~2+1.因为(x~2-1)~2≥0,(x+1)~2≥0,  相似文献   

12.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

13.
在实数范围内解无理方程,通常是把方程两边乘方同一次数,化为有理方程来解的,但对于形如 ax~2+bc+c+x(a_1x~2+b_1x+c_1)~(1/2)=0, (1)的无理方程,当c≠0时,若两边平方,一般会化为一个高于二次的整式方程,而这样的整式方程是中学生所不易解出的。本文运用不超过现行中学数学教材中的知识,从解决两个例子并通过对这两个特例的剖析入手,推  相似文献   

14.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

15.
形如y=(a_1x~2 b_1x c_1)/(a_2x~2 b_2x c_2)的分式线性函数的值域,特别是当x限制在某个区间上(x∈A)的值域问题是一个难点.一般是两边同乘以a_2x~2 b_2x c_2后整理成一个关于x的方程,通过研究该方程有解的条件(即  相似文献   

16.
在发表文[1]时,编者按中提出了方法的适用范围、可靠性、步骤等尚可探讨.下述定理完满地回答了这一问题.定理方程(*)(ax~2+b)/((cx~2+d)=(-dx+b)/(cx-a))~(1/2)(a,b,c,d∈R,ad≠bc)与方程 (1)(ax~2+b)/(cx~2+d)=x(x≥0)和(Ⅱ){(a~2+cd)x~2+(ad-bc)x+d~2+ab=0,(ax~2+b)/cx~2+d≥0,a~2+cd≠0}等价.  相似文献   

17.
同学们知道:这是根式的两个基本性质,很重要.本文分析它们的不同,以引起同学们的注意. 1.a的取值不同(1)中必须a≥0,(2)中a可取一切实数. 2.运算顺序不同(1)是先求a的算术平方根,然后求算术平方根的平方;(a~2)~(1/2)是先求a的平方,再求a2的算术平方根.  相似文献   

18.
每期一题     
题求函数(x)=(x~2 x 1-)(1/2) (x~2-x 1)(1/2)的值域。首先注意到(x)为奇函数,故只需研究x≥0的情况;其次,设当x≥0时,它的值域为y,因为函数连续,(0)=0及lim(x)=1,可知y〔0,1),故以下各解法均只证明y〔0,1〕。解法1(平方法)∵ x≥0, ∴(x)≥0,此时~2(x)=2(x~2 1)-2(x~2 1/2)~2 3/4(1/2) <2(x~2 1)-2(x~2 1/2)=1(x)∈〔0,1〕,故(x)的值域为(-1,1)。解法2(有理化法)将(x)的分子有  相似文献   

19.
结论 1 若Δ1=a2 - 4b≤ 0 ,Δ2 =c2 - 4d≤ 0 ,则函数 f(x) =x2 ax b x2 cx d的最小值是 f(x) min=12 (-Δ1 -Δ2 ) 2 (a -c) 2 .证明 :因为Δ1=a2 - 4b≤ 0 ,Δ2 =c2 - 4d≤ 0 ,所以x2 ax b≥ 0 ,x2 cx d≥ 0 ,f(x) =x2 ax b x2 cx d =x a22 0 - 4b -a222 x c22 0 - 4d -c222 .求 f(x)的最小值即求两定点A - a2 ,4b -a22 、B - c2 ,4d -c22 到x轴上一点 (x ,0 )距离和的最小值 ,即求两点A′ - a2 ,- 4b -a22 、B - c2 ,4d -c22 之距 |A′B|.点A′与A关于x轴对称 .根据对称性 |A′B|=|PA| |PB|,在x轴上任取一点…  相似文献   

20.
不等式a b≥2(ab)~(1/2)是中学数学中一个用得很广的基本不等式,但在应用中常见一些错误,现举几例. 一、忽视了a b≥2(ab)~(1/2)成立条件而导致的错误例1 设a、b、c为正数,求证(a b c)~3≥27(a b-c)(b c-a)(c a-b) 错误证法: ∵a b c=(a b-c) (b c-a) (c a-b)>0 ∴(a b-c) (b c-a) (c a-b)≥3((a b-c)(b c-a)(c a-b))~(1/2) 即(a b c)~3≥27(a b-c)(b c-a)(c a-b) 分析:虽a>0,b>0,c>0,但a b-c,b c-a,c a-b不一定都大于0,而x y z≥3(xyz)~(1/2)的中x、y、z必须都大于0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号