首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Abstract

The purpose of this study was to validate peak acceleration data from an accelerometer contained within a wearable tracking device while walking, jogging and running. Thirty-nine participants walked, jogged and ran on a treadmill while 10 peak accelerations per movement were obtained (n = 390). A single triaxial accelerometer measured resultant acceleration during all movements. To provide a criterion measure of acceleration, a 12-camera motion analysis (MA) system tracked the position of a retro-reflective marker affixed to the wearable tracking device. Peak raw acceleration recorded by the accelerometer significantly overestimated peak MA acceleration (P < 0.01). Filtering accelerometer data improved the relationship with the MA system (P < 0.01). However, only the 10 Hz and 8 Hz cut-off frequencies significantly reduced the errors found. The walk movement demonstrated the highest accuracy, agreement and precision and the lowest relative errors. Linear increases in error were observed for jog compared with walk and for run compared to both other movements. As the magnitude of acceleration increased, the strength of the relationship between the accelerometer and the criterion measure decreased. These results indicate that filtered accelerometer data provide an acceptable means of assessing peak accelerations, in particular for walking and jogging.  相似文献   

2.
This study investigated the reliability of a wireless accelerometer and its agreement with optical motion capture for the measurement of root mean square (RMS) acceleration during running. RMS acceleration provides a whole-body metric of movement mechanics and economy. Fifteen healthy college-age participants performed treadmill running for two 60-s trials at 2.22, 2.78, and 3.33 m/s and one trial of 150 s (five 30-s epochs) at 2.78 m/s. We assessed between-trial and within-trial reliability, and agreement in each axis between a trunk-mounted wireless accelerometer and a reflective marker on the accelerometer measured by optical motion capture. Intraclass correlations assessing between-trial repeatability were 0.89–0.97, depending on the axis, and intraclass correlations assessing within-trial repeatability were 0.99–1.00. Bland–Altman analyses assessing agreement indicated mean difference values between ?0.03 and 0.03 g, depending on the axis. Anterio-posterior acceleration had the greatest limits of agreement (LOA) (±0.12 g) and vertical acceleration had the smallest LOA (±0.03 g). For measuring RMS acceleration of the trunk, this wireless accelerometer node provides repeatable and valid measurement compared with the standard laboratory method of optical motion capture.  相似文献   

3.
This study analysed the validity and reliability of a new optoelectronic device (Velowin) for the measurement of vertical displacement and velocity as well as to estimate force and mechanical power. Eleven trained males with Mean (SD) age = 27.4 (4.8) years, completed an incremental squat exercise test with 5 different loads (<30–90% of their 1?repetition maximum) while displacement and vertical velocity of the barbell were simultaneously measured using an integrated 3D system (3D motion capture system + force platform) and Velowin. Substantial to almost perfect correlation (concordance correlation coefficient = 0.75–0.96), root mean square error as coefficient of variation ±90% confidence interval ≤10% and good to excellent intraclass correlation coefficient = 0.84–0.99 were determined for all the variables. Passing and Bablock regression methods revealed no differences for average velocity. However, significant but consistent bias were determined for average or peak force and power while systematic and not proportional bias was found for displacement. In conclusion, Velowin, in holds of some potential advantages over traditionally used accelerometer or linear transducers, represents a valid and reliable alternative to monitor vertical displacement and velocity as well as to estimate average force and mechanical power during the squat exercise.  相似文献   

4.
The development of cable force during hammer-throw turns is crucial to the throw distance. In this paper, we present a method that is capable of measuring cable force in real time and, as it does not interfere with technique, it is capable of providing immediate feedback to coaches and athletes during training. A strain gauge was mounted on the wires of three hammers to measure the tension in the wire and an elite male hammer thrower executed three throws with each hammer. The output from the gauges was recorded by a data logger positioned on the lower back of the thrower. The throws were captured by three high-speed video cameras and the three-dimensional position of the hammer's head was determined by digitizing the images manually. The five best throws were analysed. The force acting on the hammer's head was calculated from Newton's second law of motion and this was compared with the force measured via the strain gauge. Qualitatively the time dependence of the two forces was essentially the same, although the measured force showed more detail in the troughs of the force–time curves. Quantitatively the average difference between the measured and calculated forces over the five throws was 76 N, which corresponds to a difference of 3.8% for a cable force of 2000 N.  相似文献   

5.
Abstract

The purpose of this study was to examine the accuracy of the ePulse Personal Fitness Assistant, a forearm-worn device that provides measures of heart rate and estimates energy expenditure. Forty-six participants engaged in 4-minute periods of standing, 2.0 mph walking, 3.5 mph walking, 4.5 mph jogging, and 6.0 mph running. Heart rate and energy expenditure were simultaneously recorded at 60-second intervals using the ePulse, an electrocardiogram (EKG), and indirect calorimetry. The heart rates obtained from the ePulse were highly correlated (intraclass correlation coefficients [ICCs] ≥0.85) with those from the EKG during all conditions. The typical errors progressively increased with increasing exercise intensity but were <5 bpm only during rest and 2.0 mph. Energy expenditure from the ePulse was poorly correlated with indirect calorimetry (ICCs: 0.01–0.36) and the typical errors for energy expenditure ranged from 0.69–2.97 kcal · min?1, progressively increasing with exercise intensity. These data suggest that the ePulse Personal Fitness Assistant is a valid device for monitoring heart rate at rest and low-intensity exercise, but becomes less accurate as exercise intensity increases. However, it does not appear to be a valid device to estimate energy expenditure during exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号