首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pelvis-thorax coordination has been recognised to be associated with swing speed. Increasing angular separation between the pelvis and thorax has been thought to initiate the stretch shortening cycle and lead to increased clubhead speed. The purpose of this study was to determine whether pelvis-thorax coupling played a significant role in regulating clubhead speed, in a group of low-handicap golfers (mean handicap = 4.1). Sixteen participants played shots to target distances determined based on their typical 5- and 6-iron shot distances. Half the difference between median 5- and 6-iron distance for each participant was used to create three swing effort conditions: “minus”, “norm”, and “plus”. Ten shots were played under each swing effort condition using both the 5-iron and 6-iron, resulting in six shot categories and 60 shots per participant. No significant differences were found for X-factor for club or swing effort. X-factor stretch showed significant differences for club and swing effort. Continuous relative phase (CRP) results mainly showed evidence of the stretch shortening cycle in the downswing and that it was more pronounced late in the downswing as swing effort increased. Substantial inter-individual CRP variability demonstrated the need for individual analyses when investigating coordination in the golf swing.  相似文献   

2.
The use of multi-segment trunk models to investigate the crunch factor in golf may be warranted. The first aim of the study was to investigate the relationship between the trunk and lower trunk for crunch factor-related variables (trunk lateral bending and trunk axial rotation velocity). The second aim was to determine the level of association between crunch factor-related variables with swing (clubhead velocity) and launch (launch angle). Thirty-five high-level amateur male golfers (Mean ± SD: age = 23.8 ± 2.1 years, registered golfing handicap = 5 ± 1.9) without low back pain had kinematic data collected from their golf swing using a 10-camera motion analysis system operating at 500 Hz. Clubhead velocity and launch angle were collected using a validated real-time launch monitor. A positive relationship was found between the trunk and lower trunk for axial rotation velocity (r(35) = .47, < .01). Cross-correlation analysis revealed a strong coupling relationship for the crunch factor (R2 = 0.98) between the trunk and lower trunk. Using generalised linear model analysis, it was evident that faster clubhead velocities and lower launch angles of the golf ball were related to reduced lateral bending of the lower trunk.  相似文献   

3.
It is unknown whether skilled golfers will modify their kinematics when using drivers of different shaft properties. This study aimed to firstly determine if golf swing kinematics and swing parameters and related launch conditions differed when using modified drivers, then secondly, determine which kinematics were associated with clubhead speed. Twenty high level amateur male golfers (M ± SD: handicap = 1.9 ± 1.9 score) had their three-dimensional (3D) trunk and wrist kinematics collected for two driver trials. Swing parameters and related launch conditions were collected using a launch monitor. A one-way repeated measures ANOVA revealed significant (p ≤ 0.003) between driver differences; specifically, faster trunk axial rotation velocity and an early wrist release for the low kick point driver. Launch angle was shown to be 2° lower for the high kick point driver. Regression models for both drivers explained a significant amount of variance (60–67%) in clubhead speed. Wrist kinematics were most associated with clubhead speed, indicating the importance of the wrists in producing clubhead speed regardless of driver shaft properties.  相似文献   

4.
The purpose of this study was to investigate the influence of shaft stiffness on grip and clubhead kinematics. Two driver shafts with disparate levels of stiffness, but very similar inertial properties, were tested by 33 golfers representing a range of abilities. Shaft deflection data as well as grip and clubhead kinematics were collected from 14 swings, with each shaft, for each golfer using an optical motion capture system. The more flexible shaft (R-Flex) demonstrated a higher contribution to clubhead speed from shaft deflection dynamics (P < .001), but was also associated with significantly less grip angular velocity at impact (P = .001), resulting in no significant difference in clubhead speed (P = .14). However, at the individual level, half of the participants demonstrated a significant difference in clubhead speed between shafts. The more flexible shaft was also associated with significantly different magnitudes of head rotation relative to the grip. More specifically, both bend loft (P < .001) and bend lie (P < .001) were greater for the R-Flex shaft, while bend close (P = .017) was greater for the stiffer (X-Flex) shaft. However, changes in grip orientation resulted in no significant differences in face orientation, between the shafts, at impact.  相似文献   

5.
Whilst previous research has highlighted significant relationships between golfers’ clubhead velocity (CHV) and their vertical jump height and maximum strength, these field-based protocols were unable to measure the actual vertical ground reaction force (vGRF) variables that may correlate to performance. The aim of this study was to investigate relationships between isometric mid-thigh pull (IMTP), countermovement jump (CMJ), squat jump (SJ) and drop jump (DJ) vGRF variables and CHV in highly skilled golfers. Twenty-seven male category 1 golfers performed IMTP, CMJ, SJ and DJ on a dual force platform. The vertical jumps were used to measure positive impulse during different stretch-shortening cycle velocities, with the IMTP assessing peak force (PF) and rate of force development (RFD). Clubhead velocity was measured using a TrackMan launch monitor at a golf driving range. Pearsons correlation coefficient analyses revealed significant relationships between peak CHV and CMJ positive impulse (r = 0.788, < 0.001), SJ positive impulse (r = 0.692; < 0.001), DJ positive impulse (r = 0.561, < 0.01), PF (r = 0.482, < 0.01), RFD from 0–150 ms (r = 0.343, < 0.05) and RFD from 0–200 ms (r = 0.398, < 0.05). The findings from this investigation indicate strong relationships between vertical ground reaction force variables and clubhead velocity.  相似文献   

6.
The aims of this study were (i) to determine whether significant three-dimensional (3D) trunk kinematic differences existed between a driver and a five-iron during a golf swing; and (ii) to determine the anthropometric, physiological, and trunk kinematic variables associated with clubhead speed. Trunk range of motion and golf swing kinematic data were collected from 15 low-handicap male golfers (handicap = 2.5 ± 1.9). Data were collected using a 10-camera motion capture system operating at 250 Hz. Data on clubhead speed and ball velocity were collected using a real-time launch monitor. Paired t-tests revealed nine significant (p ≤ 0.0019) between-club differences for golf swing kinematics, namely trunk and lower trunk flexion/extension and lower trunk axial rotation. Multiple regression analyses explained 33.7–66.7% of the variance in clubhead speed for the driver and five-iron, respectively, with both trunk and lower trunk variables showing associations with clubhead speed. Future studies should consider the role of the upper limbs and modifiable features of the golf club in developing clubhead speed for the driver in particular.  相似文献   

7.
Abstract

Previous studies on the kinematics of the golf swing have mainly focused on group analysis of male golfers of a wide ability range. In the present study, we investigated gross body kinematics using a novel method of analysis for golf research for a group of low handicap female golfers to provide an understanding of their swing mechanics in relation to performance. Data were collected for the drive swings of 16 golfers using a 12-camera three-dimensional motion capture system and a stereoscopic launch monitor. Analysis of covariance identified three covariates (increased pelvis–thorax differential at the top of the backswing, increased pelvis translation during the backswing, and a decrease in absolute backswing time) as determinants of the variance in clubhead speed (adjusted r 2 = 0.965, P < 0.05). A significant correlation was found between left-hand grip strength and clubhead speed (r = 0.54, P < 0.05) and between handicap and clubhead speed (r = ?0.612, P < 0.05). Flexibility measures showed some correlation with clubhead speed; both sitting flexibility tests gave positive correlations (clockwise: r = 0.522, P < 0.05; counterclockwise: r = 0.711, P < 0.01). The results suggest that there is no common driver swing technique for optimal performance in low handicap female golfers, and therefore consideration should be given to individual swing characteristics in future studies.  相似文献   

8.
The purpose of this study was to determine the kinematic patterns that maximized the vertical force produced during the water polo eggbeater kick. Twelve water polo players were tested executing the eggbeater kick with the trunk aligned vertically and with the upper limbs above water while trying to maintain as high a position as possible out of the water for nine eggbeater kick cycles. Lower limb joint angular kinematics, pitch angles and speed of the feet were calculated. The vertical force produced during the eggbeater kick cycle was calculated using inverse dynamics for the independent lower body segments and combined upper body segments, and a participant-specific second-degree regression equation for the weight and buoyancy contributions. Vertical force normalized to body weight was associated with hip flexion (average, r = 0.691; maximum, r = 0.791; range of motion, r = 0.710), hip abduction (maximum, r = 0.654), knee flexion (average, r = 0.716; minimum, r = 0.653) and knee flexion-extension angular velocity (r = 0.758). Effective orientation of the hips resulted in fast horizontal motion of the feet with positive pitch angles. Vertical motion of the feet was negatively associated with vertical force. A multiple regression model comprising the non-collinear variables of maximum hip abduction, hip flexion range of motion and knee flexion angular velocity accounted for 81% of the variance in normalized vertical force. For high performance in the water polo, eggbeater kick players should execute fast horizontal motion with the feet by having large abduction and flexion of the hips, and fast extension and flexion of the knees.  相似文献   

9.
Abstract

The aims of this study were to (1) investigate the influence of general anthropometric variables, handball-specific anthropometric variables, and upper-limb power and strength on ball-throwing velocity in a standing position (νball), and (2) predict this velocity using multiple regression methods. Forty-two skilled male handball players (age 21.0 ± 3.0 years; height = 1.81 ± 0.07 m; body mass = 78.3 ± 11.3 kg) participated in the study. We measured general anthropometric variables (height, body mass, lean mass, body mass index) and handball-specific anthropometric parameters (hand size, arm span). Upper-limb dynamic strength was assessed using a medicine ball (2 kg) throwing test, and power using a one-repetition maximum bench-press test. All the variables studied were correlated with ball velocity. Medicine ball throwing performance was the best predictor (r = 0.80). General anthropometric variables were better predictors (r = 0.55–0.70) than handball-specific anthropometric variables (r = 0.35–0.51). The best multiple regression model accounted for 74% of the total variance and included body mass, medicine ball throwing performance, and power output in the 20-kg bench press. The equation formulated could help trainers, athletes, and professionals detect future talent and test athletes' current fitness.  相似文献   

10.
ABSTRACT

The purpose of this study was to investigate the influence of shaft torque (torsional rigidity) on clubhead kinematics and the resulting flight of the ball. Two driver shafts with disparate levels of torque, but otherwise very similar properties, were tested by 40 right-handed golfers representing a range of abilities. Shaft deflection data as well as grip and clubhead kinematics were collected from 14 swings, with each shaft, for each golfer using an optical motion capture system. Ball flight and additional clubhead kinematics were collected using a Doppler radar launch monitor. At impact, the high torque shaft (HT) was associated with increased delivered loft (P = .028) and a more open face (P < .001) relative to the low torque shaft (LT). This resulted in the HT shaft being associated with a ball finishing position that was further right (P = .002). At the individual level, the change in face angle due solely to shaft deformation was significantly higher for the HT shaft for 25/40 participants. Although shaft twist was not directly measured, it was logically deduced using the collected data that these outcomes were the result of the HT being twisted more open relative to the LT shaft at impact.  相似文献   

11.
A number of field-based investigations have evidenced practically significant relationships between clubhead velocity (CHV), vertical jump performance and maximum strength. Unfortunately, whilst these investigations provide a great deal of external validity, they are unable to ascertain vertical ground reaction force (vGRF) variables that may relate to golfers’ CHVs. This investigation aimed to assess if the variance in European Challenge Tour golfers’ CHVs could be predicted by countermovement jump (CMJ) positive impulse (PI), isometric mid-thigh pull (IMTP) peak force (PF) and rate of force development (RFD) from 0–50 ms, 0–100 ms, 0–150 ms and 0–200 ms. Thirty-one elite level European Challenge Tour golfers performed a CMJ and IMTP on dual force plates at a tournament venue, with CHV measured on a driving range. Hierarchical multiple regression results indicated that the variance in CHV was significantly predicted by all four models (model one R2 = 0.379; model two R2 = 0.392, model three R2 = 0.422, model four R2 = 0.480), with Akaike’s information criterion indicating that model one was the best fit. Individual standardised beta coefficients revealed that CMJ PI was the only significant variable, accounting for 37.9% of the variance in European Challenge Tour Golfers’ CHVs.  相似文献   

12.
The aim of this review was to determine how the findings of biomechanics and motor control/learning research may be used to improve golf performance. To be eligible, the biomechanics and motor learning studies had to use direct (ball displacement and shot accuracy) or indirect (clubhead velocity and clubface angle) golf performance outcome measures. Biomechanical studies suggested that reducing the radius path of the hands during the downswing, increasing wrist torque and/or range of motion, delaying wrist motion to late in the downswing, increasing downswing amplitude, improving sequential acceleration of body parts, improving weight transfer, and utilising X-factor stretch and physical conditioning programmes can improve clubhead velocity. Motor learning studies suggested that golf performance improved more when golfers focused on swing outcome or clubhead movement rather than specific body movements. A distributed practice approach involving multiple sessions per week of blocked, errorless practice may be best for improving putting accuracy of novice golfers, although variable practice may be better for skilled golfers. Video, verbal, or a combination of video and verbal feedback can increase mid-short iron distance in novice to mid-handicap (hcp) golfers. Coaches should not only continue to critique swing technique but also consider how the focus, structure, and types of feedback for practice may alter learning for different groups of golfers.  相似文献   

13.
We aimed to assess the relationship between throwing distance and kinematic release parameters of the flying disc in unskilled throwers, and to assess the relationship between kinetic variables acting on flying discs and the change in spin velocity during long forehand throws by skilled and unskilled throwers. Ten skilled and eleven unskilled throwers performed throws at maximum effort. Reflective marker positions on the disc and body were recorded with a 3D motion capture system during the throws to derive kinematic variables of a disc and kinetic variables acting on the disc. The analysis interval was from maximum external shoulder rotation to disc release. Significant correlations were observed between the throwing distance and spin velocity in skilled (r = 0.722, < 0.05) and unskilled throwers (r = 0.794, < 0.01), between the change in spin velocity and the angular impulse of moments of force, in unskilled throwers (r = 0.703, < 0.05), and between the change in spin velocity and the angular impulse of torque among skilled throwers (r = 0.680, < 0.01). Therefore, a strategy for increasing spin velocity in unskilled throwers could be used to generate a larger torque, similar to that observed in skilled throwers.  相似文献   

14.
It is believed that increasing the X-factor (movement of the shoulders relative to the hips) during the golf swing can increase ball velocity at impact. Increasing the X-factor may also increase the risk of low back pain. The aim of this study was to provide recommendations for the three-dimensional (3D) measurement of the X-factor and lower trunk movement during the golf swing. This three-part validation study involved; (1) developing and validating models and related algorithms (2) comparing 3D data obtained during static positions representative of the golf swing to visual estimates and (3) comparing 3D data obtained during dynamic golf swings to images gained from high-speed video. Of particular interest were issues related to sequence dependency. After models and algorithms were validated, results from parts two and three of the study supported the conclusion that a lateral bending/flexion-extension/axial rotation (ZYX) order of rotation was deemed to be the most suitable Cardanic sequence to use in the assessment of the X-factor and lower trunk movement in the golf swing. The findings of this study have relevance for further research examining the X-factor its relationship to club head speed and lower trunk movement and low back pain in golf.  相似文献   

15.
It is believed that increasing the X-factor (movement of the shoulders relative to the hips) during the golf swing can increase ball velocity at impact. Increasing the X-factor may also increase the risk of low back pain. The aim of this study was to provide recommendations for the three-dimensional (3D) measurement of the X-factor and lower trunk movement during the golf swing. This three-part validation study involved; (1) developing and validating models and related algorithms (2) comparing 3D data obtained during static positions representative of the golf swing to visual estimates and (3) comparing 3D data obtained during dynamic golf swings to images gained from high-speed video. Of particular interest were issues related to sequence dependency. After models and algorithms were validated, results from parts two and three of the study supported the conclusion that a lateral bending/flexion-extension/axial rotation (ZYX) order of rotation was deemed to be the most suitable Cardanic sequence to use in the assessment of the X-factor and lower trunk movement in the golf swing. The findings of this study have relevance for further research examining the X-factor its relationship to club head speed and lower trunk movement and low back pain in golf.  相似文献   

16.
Disagreements exist in the literature regarding the manner in which weight should be dynamically shared during the golf swing, both within-feet and between the back- and target-foot, to generate maximal clubhead speed. The purpose of this study was to determine whether preferential foot-loading locations underlie weight sharing by examining the correlation between clubhead speed and maximum plantar pressure (PP) distributions. Thirty-two amateur golfers with handicap indexes ranging from 2.7 to 25 performed 10 driver swings on artificial turf following a warm-up. PP distributions were recorded at 100 Hz, and clubhead speed was recorded using a ball-tracking Doppler radar system. Maximum PPs were extracted from a 2-s window approximately centred on ball contact and were regressed against clubhead speed. Significance was assessed over the entire foot surface using statistical parametric mapping (SPM), a spatially continuous technique. SPM revealed, at relatively high anatomical resolution, significant positive correlations between clubhead speed and PPs in the lateral target-foot (P < 0.05). This suggests that not only weight transfer but also weight-transfer location may be an important determinant of clubhead speed in amateur golfers.  相似文献   

17.
The purposes of this study were to characterise the golfer–ground interactions during the swing and to identify meaningful associations between the golfer–ground interaction force/moment parameters and the maximum clubhead speed in 63 highly skilled male golfers (handicap ≤ 3). Golfers performed shots in 3 club conditions (driver, 5-iron and pitching wedge) which were captured by an optical motion capture system and 2 force plates. In addition to the ground reaction forces (GRFs), 3 different golfer–ground interaction moments (GRF moments, pivoting moments and foot contact moments) were computed. The GRF moment about the forward/backward (F/B) axis and the pivoting moment about the vertical axis were identified as the primary moments. Significant (p < 0.05) correlations of peak force parameters (all components in the lead foot and F/B component in the trail foot) and peak moment parameters (lead-foot GRF moment and trail-foot pivoting moment) to clubhead speed were found. The lead-foot was responsible for generating the GRF moment, while the trail foot contributed to the pivoting moment more. The instant the lead arm becomes parallel to the ground was identified as the point of maximum angular effort, and the loading onto the lead-foot near this point was critical in generating both peak moments.  相似文献   

18.
Understanding of the inter-joint coordination between rotational movement of each hip and trunk in golf would provide basic knowledge regarding how the neuromuscular system organises the related joints to perform a successful swing motion. In this study, we evaluated the inter-joint coordination characteristics between rotational movement of the hips and trunk during golf downswings. Twenty-one right-handed male professional golfers were recruited for this study. Infrared cameras were installed to capture the swing motion. The axial rotation angle, angular velocity and inter-joint coordination were calculated by the Euler angle, numerical difference method and continuous relative phase, respectively. A more typical inter-joint coordination demonstrated in the leading hip/trunk than trailing hip/trunk. Three coordination characteristics of the leading hip/trunk reported a significant relationship with clubhead speed at impact (r < ?0.5) in male professional golfers. The increased rotation difference between the leading hip and trunk in the overall downswing phase as well as the faster rotation of the leading hip compared to that of the trunk in the early downswing play important roles in increasing clubhead speed. These novel inter-joint coordination strategies have the great potential to use a biomechanical guideline to improve the golf swing performance of unskilled golfers.  相似文献   

19.
The purpose of this study was to analyse the validity and reliability of a novel iPhone app (named: PowerLift) for the measurement of mean velocity on the bench-press exercise. Additionally, the accuracy of the estimation of the 1-Repetition maximum (1RM) using the load–velocity relationship was tested. To do this, 10 powerlifters (Mean (SD): age = 26.5 ± 6.5 years; bench press 1RM · kg?1 = 1.34 ± 0.25) completed an incremental test on the bench-press exercise with 5 different loads (75–100% 1RM), while the mean velocity of the barbell was registered using a linear transducer (LT) and Powerlift. Results showed a very high correlation between the LT and the app (r = 0.94, SEE = 0.028 m · s?1) for the measurement of mean velocity. Bland–Altman plots (R2 = 0.011) and intraclass correlation coefficient (ICC = 0.965) revealed a very high agreement between both devices. A systematic bias by which the app registered slightly higher values than the LT (P < 0.05; mean difference (SD) between instruments = 0.008 ± 0.03 m · s?1). Finally, actual and estimated 1RM using the app were highly correlated (r = 0.98, mean difference (SD) = 5.5 ± 9.6 kg, P < 0.05). The app was found to be highly valid and reliable in comparison with a LT. These findings could have valuable practical applications for strength and conditioning coaches who wish to measure barbell velocity in the bench-press exercise.  相似文献   

20.
This study compared the effects of two velocity loss thresholds during a power-oriented resistance training program on the mechanical capacities of lower-body muscles. Twenty men were counterbalanced in two groups (VL10 and VL20) based on their maximum power capacity. Both groups used the same exercises, relative intensity and repetition volume, only differing in the velocity loss threshold of each set (VL10: 10% vs. VL20: 20%). Pre- and post-training assessments included an incremental loading test and a 15-m linear sprint to assess the force- and load-velocity relationships and athletic performance variables, respectively. No significant between-group differences (P > 0.05) were observed for the force-velocity relationship parameters (ES range = 0.15–0.42), the MPV attained against different external loads (ES range = 0.02–0.18) or the 15-m sprint time (ES = 0.09). A high between-participants variability was reported for the number of repetitions completed in each training set (CV = 30.3% for VL10 and 29.4% for VL20). These results suggest that both velocity loss thresholds induce similar changes on the lower-body function. The high and variable number of repetitions completed may compromise the velocity-based approach for prescribing and monitoring the repetition volume during a power-oriented resistance training program conducted with the countermovement jump exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号