首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Best-practice guidelines have incorporated ultrasound in diagnostic and procedural medicine. Due to this demand, the Arizona College of Osteopathic Medicine initiated a comprehensive integration of ultrasound into its first-year anatomy course attended by more than 280 students. Ultrasound workshops were developed to enhance student conceptualization of musculoskeletal (MSK) anatomy through visualizing clinically important anatomical relationships, a simulated lumbar puncture during the back unit, carpal tunnel and shoulder evaluations during the upper limb unit, and plantar fascia, calcaneal tendon, and tarsal tunnel evaluations during the lower limb unit. A 5-point Likert scale survey evaluated if ultrasound improved students' self-perceived anatomical and clinical comprehension of relevant anatomy, improved students' ability to orient to ultrasound imagery, and prompted further independent investigation of the anatomical area. Ultrasound examination questions were added to the anatomy examinations. Two-tailed one-sample t-tests for the back, upper limb, and lower limb units were found to be significant across all Likert survey categories (P < 0.001). Positive student responses to the Likert survey in conjunction with examination question average of 84.3% (±10.3) demonstrated that the ultrasound workshops are beneficial to student education. Ultrasound enhances medical students' clinical and anatomical comprehension and ability to orient to ultrasound imagery for MSK anatomy. This study supports early ultrasound education as a mechanism to encourage students' independent learning as evidenced by many undertaking voluntary investigation of clinical concerns associated with MSK anatomy. This study establishes the successful integration of MSK ultrasound into a large medical school program and its benefit to student clinical education.  相似文献   

2.
Assessment is an important aspect of medical education because it tests students' competence and motivates them to study. Various assessment methods, with and without images, are used in the study of anatomy. In this study, we investigated the use of extended matching questions (EMQs). To gain insight into the influence of images on the validity of test items, we focused on students' cognitive processes while they answered questions with and without images. Seventeen first‐year medical students answered EMQs about gross anatomy, combined with either labeled images or answer lists, while thinking aloud. The participants' verbal reports were transcribed verbatim and then coded. Initial codes were based on a task analysis and were adapted into final codes during the coding process. Results showed that students used more cues from EMQs with images and visualized more often in EMQs with answer lists. Ready knowledge and verbal reasoning were used equally often in both conditions. In conclusion, EMQs with and without images elicit different results in this think aloud experiment, indicating different cognitive processes. They seem to measure different skills, making them valid for different testing purposes. The take‐home message for anatomy teachers is that questions without images seem to test the quality of students' mental images while questions with images test their ability to interpret visual information. It makes sense to use both response formats in tests. Using images from clinical practice instead of anatomical drawings will help to improve test validity. Anat Sci Educ 7: 107–116. © 2013 American Association of Anatomists.  相似文献   

3.
Innovations in undergraduate medical education, such as integration of disciplines and problem based learning, have given rise to concerns about students' knowledge of anatomy. This article originated from several studies investigating the knowledge of anatomy of students at the eight Dutch medical schools. The studies showed that undergraduate students uniformly perceived deficiencies in their anatomical knowledge when they started clinical training regardless of their school's didactic approach. A study assessing students' actual knowledge of clinical anatomy revealed no relationship between students' knowledge and the school's didactic approach. Test failure rates based on absolute standards set by different groups of experts were indicative of unsatisfactory levels of anatomical knowledge, although standards differed markedly between the groups of experts. Good test performance by students seems to be related to total teaching time for anatomy, teaching in clinical context, and revisiting anatomy topics in the course of the curriculum. These factors appeared to outweigh the effects of disciplinary integration orwhether the curriculum was problem‐based or traditional. Anat Sci Ed 2008. © 2008 American Association of Anatomists.  相似文献   

4.
The contribution of donor dissection to modern anatomy pedagogy remains debated. While short-term anatomy knowledge gains from dissection are questionable, studies suggest that donor dissection may have other impacts on students including influencing medical students' professional development, though evidence for such is limited. To improve the understanding of how anatomy education influences medical student professional development, the cross-sectional and longitudinal impacts of donor dissection on medical students' perceptions of ethics were explored. A cross-sectional and longitudinal qualitative study was undertaken at an Australian university where student responses to online discussion forums and in-person interviews were analyzed. Data were collected across the 1.5 years that undergraduate medical students received anatomy instruction (three semesters during first and second years). A total of 207 students participated in the online discussion forums, yielding 51,024 words; 24 students participated in at least 1 of 11 interviews, yielding over 11 hours of interview data. Framework analysis identified five themes related to ethics in an anatomical education context: (1) Dignity, (2) Beneficence, (3) Consent, (4) Justification for versus the necessity of dissection, and (5) Dichotomy of objectification and personification. The dominant themes of students' ethical perceptions changed with time, with a shift from focusing on donors as people, toward the utility of donors in anatomy education. Additionally, themes varied by student demographics including gender, ancestry, and religiosity. Together this study suggests a strong impact of donor dissection on priming students' focus on medical ethics and provides further advocacy for formal and purposeful integration of medical ethics with anatomy education.  相似文献   

5.
Speech pathology students readily identify the importance of a sound understanding of anatomical structures central to their intended profession. In contrast, they often do not recognize the relevance of a broader understanding of structure and function. This study aimed to explore students' perceptions of the relevance of anatomy to speech pathology. The effect of two learning activities on students' perceptions was also evaluated. First, a written assignment required students to illustrate the relevance of anatomy to speech pathology by using an example selected from one of the four alternative structures. The second approach was the introduction of brief “scenarios” with directed questions into the practical class. The effects of these activities were assessed via two surveys designed to evaluate students' perceptions of the relevance of anatomy before and during the course experience. A focus group was conducted to clarify and extend discussion of issues arising from the survey data. The results showed that the students perceived some course material as irrelevant to speech pathology. The importance of relevance to the students' “state” motivation was well supported by the data. Although the students believed that the learning activities helped their understanding of the relevance of anatomy, some structures were considered less relevant at the end of the course. It is likely that the perceived amount of content and surface approach to learning may have prevented students from “thinking outside the box” regarding which anatomical structures are relevant to the profession. Anat Sci Ed 2008. © 2008 American Association of Anatomists.  相似文献   

6.
Anatomical examinations have been designed to assess topographical and/or applied knowledge of anatomy with or without the inclusion of visual resources such as cadaveric specimens or images, radiological images, and/or clinical photographs. Multimedia learning theories have advanced the understanding of how words and images are processed during learning. However, the evidence of the impact of including anatomical and radiological images within written assessments is sparse. This study investigates the impact of including images within clinically oriented single-best-answer questions on students' scores in a tailored online tool. Second-year medical students (n = 174) from six schools in the United Kingdom participated voluntarily in the examination, and 55 students provided free-text comments which were thematically analyzed. All questions were categorized as to whether their stimulus format was purely textual or included an associated image. The type (anatomical and radiological image) and deep structure of images (question referring to a bone or soft tissue on the image) were taken into consideration. Students scored significantly better on questions with images compared to questions without images (P < 0.001), and on questions referring to bones than to soft tissue (P < 0.001), but no difference was found in their performance on anatomical and radiological image questions. The coding highlighted areas of “test applicability” and “challenges faced by the students.” In conclusion, images are critical in medical practice for investigating a patient's anatomy, and this study sets out a way to understand the effects of images on students' performance and their views in commonly employed written assessments.  相似文献   

7.
With integrated curricula and multidisciplinary assessments becoming more prevalent in medical education, there is a continued need for educational research to explore the advantages, consequences, and challenges of integration practices. This retrospective analysis investigated the number of items needed to reliably assess anatomical knowledge in the context of gross anatomy and histology. A generalizability analysis was conducted on gross anatomy and histology written and practical examination items that were administered in a discipline‐based format at Indiana University School of Medicine and in an integrated fashion at the University of Alabama School of Medicine and Rush University Medical College. Examination items were analyzed using a partially nested design in which items were nested within occasions (i:o) and crossed with students (s). A reliability standard of 0.80 was used to determine the minimum number of items needed across examinations (occasions) to make reliable and informed decisions about students' competence in anatomical knowledge. Decision study plots are presented to demonstrate how the number of items per examination influences the reliability of each administered assessment. Using the example of a curriculum that assesses gross anatomy knowledge over five summative written and practical examinations, the results of the decision study estimated that 30 and 25 items would be needed on each written and practical examination to reach a reliability of 0.80, respectively. This study is particularly relevant to educators who may question whether the amount of anatomy content assessed in multidisciplinary evaluations is sufficient for making judgments about the anatomical aptitude of students. Anat Sci Educ 10: 109–119. © 2016 American Association of Anatomists.  相似文献   

8.
Changes in medical education have affected both curriculum design and delivery. Many medical schools now use integrated curricula and a systemic approach, with reduced hours of anatomy teaching. While learning anatomy via dissection is invaluable in educational, professional, and personal development, it is time intensive and supports a regional approach to learning anatomy; the use of prosections has replaced dissection as the main teaching method in many medical schools. In our graduate‐entry medical degree, we use an integrated curriculum, with prosections to teach anatomy systemically. However, to not exclude dissection completely, and to expose students to its additional and unique benefits, we implemented a short “Dissection Experience” at the beginning of Year 2. Students attended three two‐hour anatomy sessions and participated in dissection of the clinically relevant areas of the cubital fossa, femoral triangle, and infraclavicular region. This activity was voluntary and we retrospectively surveyed all students to ascertain factors influencing their decision of whether to participate in this activity, and to obtain feedback from those students who did participate. The main reasons students did not participate were previous dissection experience and time constraints. The reasons most strongly affecting students' decisions to participate related to experience (lack of previous or new) and new skill. Students' responses as to the most beneficial component of the dissection experience were based around practical skills, anatomical education, the learning process, and the body donors. We report here on the benefits and practicalities of including a short dissection experience in a systemic, prosection‐based anatomy course. Anat Sci Educ 6: 225–231. © 2013 American Association of Anatomists.  相似文献   

9.
Hands-on dissection-based learning of anatomy offers an unique and valued experience for medical students. Too often however, the inexperienced student's focus is to avoid damage to unfamiliar structures instead of understanding spatial relationships between structures. This results in unfortunate surrender of a critical learning experience. Additionally, approaches to dissection and anatomic exposure share little alignment to clinical approaches, making it less powerful in clinical applicability. The goal of this viewpoint commentary is based on the experience of the two authors and aims to demonstrate opportunity to introduce clinical approaches for dissection while incorporating relevant anatomical concepts in medical school curriculum that aligns with authentic healthcare practice. Using the dissections of the superficial face as a relevant and current topic of clinical interest, we point out that applying the currently performed dissection approach (medial-to-lateral) falls short of providing sufficient knowledge and understanding of the layered arrangement of facial structures. The lateral-to-medial approach, as performed in surgical face lifting procedures would offer a better understanding of the layers of the face and especially the superficial musculoaponeurotic system (SMAS) accounting for the difficulties of facial dissections on embalmed cadavers. This commentary could offer a potential change in paradigm for students and course facilitators for how to maximize the knowledge transfer during facial dissections. It potentially opens a door to rethink dissection-based learning of anatomy toward techniques and approaches that are aligned to surgical access pathways and thus considered more clinically relevant.  相似文献   

10.
Surgical anatomy is taught early in medical school training. The literature shows that many physicians, especially surgical specialists, think that anatomical knowledge of medical students is inadequate and nesting of anatomical sciences later in the clinical curriculum may be necessary. Quantitative data concerning this perception of an anatomical knowledge deficit are lacking, as are specifics as to what content should be reinforced. This study identifies baseline areas of strength and weakness in the surgical anatomy knowledge of medical students entering surgical rotations. Third‐year medical students completed a 20–25‐question test at the beginning of the General Surgery and Obstetrics and Gynecology rotations. Knowledge of inguinal anatomy (45.3%), orientation in abdominal cavity (38.8%), colon (27.7%), and esophageal varices (12.8%) was poor. The numbers in parentheses are the percentage of questions answered correctly per topic. In comparing those scores to matched test items from this cohort as first‐year students in the anatomy course, the drop in retention overall was very significant (P = 0.009) from 86.9 to 51.5%. Students also scored lower in questions relating to pelvic organs (46.7%), urogenital development (54.0%), pulmonary development (17.8%), and pregnancy (17.8%). These data showed that indeed, knowledge of surgical anatomy is poor for medical students entering surgical clerkships. These data collected will be utilized to create interactive learning modules, aimed at improving clinically relevant anatomical knowledge retention. These modules, which will be available to students during their inpatient surgical rotations, connect basic anatomy principles to clinical cases, with the ultimate goal of closing the anatomical knowledge gap. Anat Sci Educ 7: 461–468. © 2014 American Association of Anatomists.  相似文献   

11.
Anatomy education often consists of a combination of lectures and laboratory sessions, the latter frequently including surface anatomy. Studying surface anatomy enables students to elaborate on their knowledge of the cadaver's static anatomy by enabling the visualization of structures, especially those of the musculoskeletal system, move and function in a living human being. A recent development in teaching methods for surface anatomy is body painting, which several studies suggest increases both student motivation and knowledge acquisition. This article focuses on a teaching approach and is a translational contribution to existing literature. In line with best evidence medical education, the aim of this article is twofold: to briefly inform teachers about constructivist learning theory and elaborate on the principles of constructive, collaborative, contextual, and self‐directed learning; and to provide teachers with an example of how to implement these learning principles to change the approach to teaching surface anatomy. Student evaluations of this new approach demonstrate that the application of these learning principles leads to higher student satisfaction. However, research suggests that even better results could be achieved by further adjustments in the application of contextual and self‐directed learning principles. Successful implementation and guidance of peer physical examination is crucial for the described approach, but research shows that other options, like using life models, seem to work equally well. Future research on surface anatomy should focus on increasing the students' ability to apply anatomical knowledge and defining the setting in which certain teaching methods and approaches have a positive effect. Anat Sci Educ 6: 114–124. © 2012 American Association of Anatomists.  相似文献   

12.
At the end of 2019, the Covid-19 pandemic spread caused restrictions in business and social spheres. Higher education was also severely affected: universities and medical schools moved online to distance learning and laboratory facilities closed. Questions arise about the long-term effects of this pandemic on anatomical education. In this systematic review, the authors investigated whether or not anatomical educators were able to deliver anatomical knowledge during this pandemic. They also discuss the challenges that anatomical education has faced over the last year. The search strategy was conducted between July 2020 and July 2021. Two hundred and one records were identified, and a total of 79 studies were finally included. How best to deliver anatomy to students remains a moot point. In the last years, the advent of new technologies has raised the question of the possible overcoming of dissection as the main instrument in anatomical education. The Covid-19 pandemic further sharpened the debate. Remote learning enhanced the use of technologies other than cadaveric dissection to teach anatomy. Moreover, from the analyzed records it appears that both from students' perspective as well as teachers' there is a clear tear between those who endorse dissection and those who believe it could be easily overcome or at least integrated by virtual reality and online learning. The authors strongly believe that the best anatomy teaching practice requires the careful adaptation of resources and methods. Nevertheless, they support cadaveric dissection and hope that it will not be replaced entirely as a result of this pandemic.  相似文献   

13.
14.
Teaching internal structures obscured from direct view is a major challenge of anatomy education. High-fidelity interactive three-dimensional (3D) micro-computed tomography (CT) models with virtual dissection present a possible solution. However, their utility for teaching complex internal structures of the human body is unclear. The purpose of this study was to investigate the use of a realistic 3D micro-CT interactive visualization computer model to teach paranasal sinus anatomy in a laboratory setting during pre-clinical medical training. Year 1 (n = 79) and Year 2 (n = 59) medical students undertook self-directed activities focused on paranasal sinus anatomy in one of two laboratories (traditional laboratory and 3D model). All participants completed pre and posttests before and after the laboratory session. Results of regression analyses predicting post-laboratory knowledge indicate that, when students were inexperienced with the 3D computer technology, use of the model was detrimental to learning for students with greater prior knowledge of the relevant anatomy (P < 0.05). For participants experienced with the 3D computer technology, however, the use of the model was detrimental for students with less prior knowledge of the relevant anatomy (P < 0.001). These results emphasize that several factors need to be considered in the design and effective implementation of such models in the classroom. Under the right conditions, the 3D model is equal to traditional laboratory resources when used as a learning tool. This paper discusses the importance of preparatory training for students and the technical consideration necessary to successfully integrate such models into medical anatomical curricula.  相似文献   

15.
Anatomical understanding is critical to medical education. With reduced teaching time and limited cadaver availability, it is important to investigate how best to utilize in vivo imaging to supplement anatomical understanding and better prepare medical graduates for the proliferation of point‐of‐care imaging in the future. To investigate whether using short sessions of in vivo imaging using ultrasonography could benefit students' anatomical knowledge and clinical application, we conducted a 2‐hour session on abdominal anatomy using ultrasonography in small groups of five to six students, for both first‐ and second‐year student cohorts. Individual feedback was collected to assess student perceptions. To measure retention and understanding, a short examination containing ultrasound images and questions and performance of a clinical skill (gastrointestinal' tract examination) were assessed. Ultrasonography sessions were highly valued by the students, with 90% of the students reporting their understanding was improved, and over 70% reporting increased confidence in their anatomical knowledge. However, the assessments showed no appreciable impact on skills or understanding related to abdominal anatomy and examination. We conclude that the risk associated with limited exposure increasing confidence without increasing skills remains real and that in vivo imaging is not effective when used as a short adjunct teaching tool. The widespread use of ultrasonography means finding the best way to incorporate ultrasound into medical education remains important. To this end, we are currently implementing an extended program including echocardiography and multiple anatomical sessions that will determine if frequency and repetition of use can positively impact on student performance and understanding. Anat Sci Educ. © 2013 American Association of Anatomists.  相似文献   

16.
To address the need for more clinical anatomy training in residency education, many postgraduate programs have implemented structured anatomy courses into their curriculum. Consensus often does not exist on specific content and level of detail of the content that should be included in such curricula. This article describes the use of the Delphi method to identify clinically relevant content to incorporate in a musculoskeletal anatomy curriculum for Physical Medicine and Rehabilitation (PM&R) residents. A two round modified Delphi involving PM&R experts was used to establish the curricular content. The anatomical structures and clinical conditions presented to the expert group were compiled using multiple sources: clinical musculoskeletal anatomy cases from the PM&R residency program at the University of Toronto; consultation with PM&R experts; and textbooks. In each round, experts rated the importance of each curricular item to PM&R residency education using a five‐point Likert scale. Internal consistency (Cronbach's alpha) was used to determine consensus at the end of each round and agreement scores were used as an outcome measure to determine the content to include in the curriculum. The overall internal consistency in both rounds was 0.99. A total of 37 physiatrists from across Canada participated and the overall response rate over two rounds was 97%. The initial curricular list consisted of 361 items. After the second iteration, the list was reduced by 44%. By using a national consensus method we were able to objectively determine the relevant anatomical structures and clinical musculoskeletal conditions important in daily PM&R practice. Anat Sci Educ 7: 135–143. © 2013 American Association of Anatomists.  相似文献   

17.
The Covid-19 pandemic has challenged medical educators internationally to confront the challenges of adapting their present educational activities to a rapidly evolving digital world. In this article, the authors use anatomy education as proxy to reflect on and remap the past, present, and future of medical education in the face of these disruptions. Inspired by the historical Theatrum Anatomicum (Anatomy 1.0), the authors argue replacing current anatomy dissection laboratory (Anatomy 2.0) with a prototype anatomy studio (Anatomy 3.0). In this studio, anatomists are web-performers who not only collaborate with other foundational science educators to devise meaningful and interactive content but who also partner with actors, directors, web-designers, computer engineers, information technologists, and visual artists to master online interactions and processes in order to optimize students' engagement and learning. This anatomy studio also offers students opportunities to create their own online content and thus reposition themselves digitally, a step into developing a new competency of stage presence within medical education. So restructured, Anatomy 3.0 will prepare students with the skills to navigate an emergent era of tele and digital medicine as well as help to foreshadow forthcoming changes in medical education.  相似文献   

18.
Pre‐clinical anatomy curricula must provide medical students with the knowledge needed in a variety of medical and surgical specialties. But do physicians within specialties agree about what anatomical knowledge is most important in their practices? And, what is the common core of anatomical knowledge deemed essential by physicians in different specialties? Answers to these questions would be useful in designing pre‐clinical anatomy courses. The primary aim of this study was to assess the importance of a human gross anatomy course by soliciting the opinions of physicians from a range of specialties. We surveyed 93 physicians to determine the importance of specific anatomical topics in their own practices. Their responses were analyzed to assess variation in intra‐ and inter‐departmental attitudes toward the importance of anatomy. Nearly all of the topics taught in the course were deemed important by the clinicians as a group, but respondents showed little agreement on the rank order of importance of anatomical topics. Overall, only medical imaging received high importance by nearly all respondents, and lower importance was attached to embryology and lymphatic anatomy. Our survey data, however, also suggested distinct hierarchies in the importance assigned to anatomical topics within specialties. Given that physicians view the importance of anatomy differently, we suggest that students revisit anatomy through a vertically integrated curriculum tailored to provide specialty‐specific anatomical training to advanced students based on their areas of clinical interest. Integration of medical imaging into pre‐clinical anatomy courses, already underway in many medical schools, is of high clinical relevance. Anat Sci Educ 7: 251–261. © 2013 American Association of Anatomists.  相似文献   

19.
The anatomical sciences have always been regarded as an essential component of medical education. In Canada, the methodology and time dedicated to anatomy teaching are currently unknown. Two surveys were administered to course directors and discipline leaders to gain a comprehensive view of anatomical education in Canadian medical schools. Participants were queried about contact hours (classroom and laboratory), content delivery and assessment methods for gross anatomy, histology, and embryology. Twelve schools responded to both surveys, for an overall response rate of 64%. Overall, Canadian medical students spend 92.8 (± 45.4) hours (mean ± SD) studying gross anatomy, 25.2 (± 21.0) hours for histology, and 7.4 (± 4.3) hours for embryology. Gross anatomy contact hours statistically significantly exceeded those for histology and embryology. Results show that most content is delivered in the first year of medical school, as anatomy is a foundational building block for upper-year courses. Laboratory contact time for gross anatomy was 56.8 (± 30.7) hours, histology was 11.4 (± 16.2) hours, and embryology was 0.25 (± 0.6) hours. Additionally, 42% of programs predominantly used instructor/technician-made prosections, another 33% used a mix of dissection and prosections and 25% have their students complete cadaveric dissections. Teaching is either completely or partially integrated into all Canadian medical curricula. This integration trend in Canada parallels those of other medical schools around the world where programs have begun to decrease contact time in anatomy and increase integration of the anatomical sciences into other courses. Compared to published American data, Canadian schools offer less contact time. The reason for this gap is unknown. Further investigation is required to determine if the amount of anatomical science education within medical school affects students' performance in clerkship, residency and beyond.  相似文献   

20.
The evolution in undergraduate medical school curricula has significantly impacted anatomy education. This study investigated the perceived role of clinical anatomy and evaluated perceptions of medical students' ability to apply anatomical knowledge in the clinic. The aim of this study was to develop a framework to enhance anatomical educational initiatives. Unlike previous work, multiple stakeholders (clinicians, medical students, and academic anatomists) in anatomy education were evaluated. Participants completed an eleven-point Likert scale survey written by the investigators. Responses from both clinical educators and medical students at Penn State Milton S. Hershey Medical Center and College of Medicine suggest that medical students are perceived as ill-prepared to transfer anatomy to the clinic. Although some areas of patient management differ in relevancy to anatomical education, there are areas of clinical care which were uniformly ranked as relying heavily on anatomical knowledge (imaging and diagnostic studies, physical examination, and arrival at correct diagnosis) by a variety of clinical specialists. Our results suggest a need for advanced anatomy courses to be taught coincidental with medical students' clinical education. Development of these courses would optimally rely on input from both clinicians and academic anatomists, as both cohorts rated clinical anatomy similarly (P ≥ 0.05). Additionally, we hypothesize that preclinical students' application of anatomy would be enhanced if clinical context was derived from areas of clinical care which rely heavily on anatomy, whereas courses designed for advanced medical students will benefit from anatomical context focused on specialty specific aspects of clinical care identified in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号