首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This study examined the accuracy of a new device (Caltrac) in estimating energy expenditure via acceleration measurements. Energy expenditure of 20 high school students during basketball class activity (average length = 37 min) was estimated using the Caltrac, heart rate recording, and video analysis. Heart rate recording and video analysis estimates of energy expenditure were determined from heart rate, caloric expenditure curves, and an activity rating scale, respectively. The following estimates of caloric expenditure (M ± SD) were found: heart rate recording = 196 ±73 > Caltrac = 163 ±49 > film analysis = 123 ± 30 kcal (p < .05). Laboratory simulations of the basketball activity revealed that the Caltrac energy expenditure was not significantly different from the actual energy expenditure (p > .05). The heart rate recording and video analysis estimates of energy expenditure were significantly (p < .05) higher and lower, respectively, than the actual energy expenditure. The Caltrac is a lightweight, low-cost device that provides a relatively accurate estimate of energy expenditure in free-ranging activities, such as basketball.  相似文献   

2.
Familial aggregation in physical activity.   总被引:1,自引:0,他引:1  
The purposes of this study were to (a) examine the stability and consistency of the Caltrac accelerometer (Hemokinetics, Madison, WI) and an activity record to assess physical activity in children and adults (Experiment 1), and (b) to determine if there is a relationship between parents and their children in physical activity level (Experiment 2). Thirty 5-9-year-old children and their biological parents wore Caltrac accelerometers for three consecutive days (including one weekend day). At the same time, parents completed a Caltrac Activity Record (CAL REC) for themselves and their child. Dependent variables were counts per day for the Caltrac and minutes of light activity and activity for the CAL REC. Between-day correlations for the Caltrac ranged from r = .73 to .87 for the parents (p less than .001) and from r = .38 (p less than .04) to .79 (p less than .001) for the children. An analysis of variance with repeated measures indicated no significant differences for the Caltrac between days for parents and children. Between-day correlations for CAL REC ranged from r = .67 to .91 (p less than .05) for parents and r = .36 to .72 (p less than .05) for children, and there were no significant differences between days. In Experiment 2, chi 2 analyses were used to examine familial resemblance in physical activity. Using the Caltrac, familial resemblance occurred in 67% (father and child) and 73% (mother and child) of the families. Using the CAL REC, familial aggregation was present in 70% (father and child) and 66% (mother and child) of the families.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Abstract

Women participants in archery, badminton, basketball, bowling, golf, hockey, Softball, tennis, and volleyball were tested to determine the relative strenuousness of these sports. The subjects' heart beats were telemetered during participation in each sport, and estimates of their ventilation and oxygen uptake for each activity were determined from data collected in the laboratory.

Mean heart rates, oxygen uptake and VO2 per kilogram of body weight were calculated for each subject in each sport. Comparisons were made to determine which activities demanded the greatest energy expenditure.

Heart rates ranging from a mean of 85 beats/min. in bowling to a mean of 185 beats/min. for the roving player in basketball were recorded. The energy expenditure of the roving player in basketball was similar to that of the center halfback in hockey; these two positions required a significantly greater O2 uptake than the positions tested in all other sports. Play in these positions was classified as heavy activity.

The non-roving positions of forward and guard in basketball, badminton, tennis, Softball (pitcher), and volleyball were rated as moderate activity. Golf, archery, and bowling were categorized as light activity in terms of energy expenditure.  相似文献   

4.
The aim of this study was to examine heart rate, blood lactate concentration and estimated energy expenditure during a competitive rugby league match. Seventeen well-trained rugby league players (age, 23.9 +/- 4.1 years; VO2max, 57.9 +/- 3.6 ml x kg(-1) x min(-1); height, 1.82 +/- 0.06 m; body mass, 90.2 +/- 9.6 kg; mean +/- s) participated in the study. Heart rate was recorded continuously throughout the match using Polar Vantage NV recordable heart rate monitors. Blood lactate samples (n = 102) were taken before the match, after the warm-up, at random stoppages in play, at half time and immediately after the match. Estimated energy expenditure during the match was calculated from the heart rate-VO2 relationship determined in laboratory tests. The mean team heart rate (n = 15) was not significantly different between halves (167 +/- 9 vs 165 +/- 11 beats x min(-1)). Mean match intensity was 81.1 +/- 5.8% VO2max. Mean match blood lactate concentration was 7.2 +/- 2.5 mmol x l(-1), with concentrations for the first half (8.4 +/- 1.8 mmol x l(-1)) being significantly higher than those for the second half (5.9 +/- 2.5 mmol x l(-1)) (P<0.05). Energy expenditure was approximately 7.9 MJ. These results demonstrate that semi-professional rugby league is a highly aerobic game with a considerable anaerobic component requiring high lactate tolerance. Training programmes should reflect these demands placed on players during competitive match-play.  相似文献   

5.
The purpose of this study was to examine the accuracy of the ePulse Personal Fitness Assistant, a forearm-worn device that provides measures of heart rate and estimates energy expenditure. Forty-six participants engaged in 4-minute periods of standing, 2.0 mph walking, 3.5 mph walking, 4.5 mph jogging, and 6.0 mph running. Heart rate and energy expenditure were simultaneously recorded at 60-second intervals using the ePulse, an electrocardiogram (EKG), and indirect calorimetry. The heart rates obtained from the ePulse were highly correlated (intraclass correlation coefficients [ICCs] ≥0.85) with those from the EKG during all conditions. The typical errors progressively increased with increasing exercise intensity but were <5 bpm only during rest and 2.0 mph. Energy expenditure from the ePulse was poorly correlated with indirect calorimetry (ICCs: 0.01-0.36) and the typical errors for energy expenditure ranged from 0.69-2.97 kcal · min(-1), progressively increasing with exercise intensity. These data suggest that the ePulse Personal Fitness Assistant is a valid device for monitoring heart rate at rest and low-intensity exercise, but becomes less accurate as exercise intensity increases. However, it does not appear to be a valid device to estimate energy expenditure during exercise.  相似文献   

6.
To examine the activity profile and physiological demands of top-class soccer refereeing, we performed computerized time-motion analyses and measured the heart rate and blood lactate concentration of 27 referees during 43 competitive matches in the two top Danish leagues. To relate match performance to physical capacity and training, several physiological tests were performed before and after intermittent exercise training. Total distance covered was 10.07+/-0.13 km (mean +/- s(x)), of which 1.67+/-0.08 km was high-intensity running. High-intensity running and backwards running decreased (P < 0.05) in the second half. Mean heart rate was 162+/-2 beats min(-1) (85+/-1% of maximal heart rate) and the mean blood lactate concentration was 4.9+/-0.3 (range 1.7-14.0) mmol x l(-1). The amount of high-intensity running during a match was related to the Yo-Yo intermittent recovery test (r2 = 0.57; P<0.05) and the 12 min run (r2 = 0.21; P<0.05). After intermittent training (n = 8), distance covered during high-intensity running was greater (2.06+/-0.13 vs 1.69+/-0.08 km; P< 0.05) and mean heart rate was lower (159+/-1 vs 164+/-2 beats x min(-1); P< 0.05) than before training. The results of the present study demonstrate that: (1) top-class soccer referees have significant aerobic energy expenditure throughout a game and episodes of considerable anaerobic energy turnover; (2) the ability to perform high-intensity running is reduced towards the end of matches; (3) the Yo-Yo intermittent recovery test can be used to evaluate referees' match performance; and (4) intense intermittent exercise training improves referees' performance capacity during a game.  相似文献   

7.
The aims of this study were to quantify the effects of factors such as mode of exercise, body composition and training on the relationship between heart rate and physical activity energy expenditure (measured in kJ x min(-1)) and to develop prediction equations for energy expenditure from heart rate. Regularly exercising individuals (n = 115; age 18-45 years, body mass 47-120 kg) underwent a test for maximal oxygen uptake (VO2max test), using incremental protocols on either a cycle ergometer or treadmill; VO2max ranged from 27 to 81 ml x kg(-1) x min(-1). The participants then completed three steady-state exercise stages on either the treadmill (10 min) or the cycle ergometer (15 min) at 35%, 62% and 80% of VO2max, corresponding to 57%, 77% and 90% of maximal heart rate. Heart rate and respiratory exchange ratio data were collected during each stage. A mixed-model analysis identified gender, heart rate, weight, V2max and age as factors that best predicted the relationship between heart rate and energy expenditure. The model (with the highest likelihood ratio) was used to estimate energy expenditure. The correlation coefficient (r) between the measured and estimated energy expenditure was 0.913. The model therefore accounted for 83.3% (R2) of the variance in energy expenditure in this sample. Because a measure of fitness, such as VO2max, is not always available, a model without VO2max included was also fitted. The correlation coefficient between the measured energy expenditure and estimates from the mixed model without VO2max was 0.857. It follows that the model without a fitness measure accounted for 73.4% of the variance in energy expenditure in this sample. Based on these results, we conclude that it is possible to estimate physical activity energy expenditure from heart rate in a group of individuals with a great deal of accuracy, after adjusting for age, gender, body mass and fitness.  相似文献   

8.
Abstract

The purposes of this study were to (a) examine the stability and consistency of the Caltrac accelerometer (Hemokinetics, Madison, WI) and an activity record to assess physical activity in children and adults (Experiment 1), and (b) to determine if there is a relationship between parents and their children in physical activity level (Experiment 2). Thirty 5–9-year-old children and their biological parents wore Caltrac accelerometers for three consecutive days (including one weekend day). At the same time, parents completed a Caltrac Activity Record (CAL REC) for themselves and their child. Dependent variables were counts per day for the Caltrac and minutes of light activity and activity for the CAL REC. Between-day correlations for the Caltrac ranged from r = .73 to .87 for the parents (p < .001) and from r = .38 (p < .04) to .79 (p < .001) for the children. An analysis of variance with repeated measures indicated no significant differences for the Caltrac between days for parents and children. Between-day correlations for CAL REC ranged from r = .67 to .91 (p < .05) for parents and r = .36 to .72 (p < .05) for children, and there were no significant differences between days. In Experiment 2, χ2 analyses were used to examine familial resemblance in physical activity. Using the Caltrac, familial resemblance occurred in 67% (father and child) and 73% (mother and child) of the families. Using the CAL REC, familial aggregation was present in 70% (father and child) and 66% (mother and child) of the families. Thus, children of active and less active parents exhibited physical activity patterns similar to their parents.  相似文献   

9.
The effect of time of day on ratings of perceived exertion (RPE) at various intensities of cycling exercise, both below and above the ventilatory threshold, was studied in 32 subjects, 18 to 35 years of age. The ventilatory threshold occurred at the same (p greater than .05) mean (+/- SD) work rate in the morning (110.6 +/- 27.0 watts) and in the afternoon (111.9 +/- 23.9 watts) and was perceived as equally strenuous (p greater than .05) in the morning (RPE = 13.8 +/- 2.4) and in the afternoon (RPE = 13.6 +/- 2.8). At intensities below the ventilatory threshold, RPE was the same (p greater than .05) in the morning and in the afternoon; above the ventilatory threshold, RPE was lower (p less than .05) in the morning. We conclude that, during incremental submaximal cycling exercise above the ventilatory threshold, a particular work rate is perceived as less strenuous in the morning than in the afternoon. About 20% of this difference in RPE is explained by lower ventilatory demands in the morning.  相似文献   

10.
The agreement between self-reported and objective estimates of activity energy expenditure was evaluated in adolescents by age, sex, and weight status. Altogether, 403 participants (217 females, 186 males) aged 13-16 years completed a 3-day physical activity diary and wore a GT1M accelerometer on the same days. Partial correlations (controlling for body mass) were used to determine associations between estimated activity energy expenditure (kcal · min(-1)) from the diary and accelerometry. Differences in the magnitude of the correlations were examined using Fisher's r to z transformations. Bland-Altman procedures were used to determine concordance between the self-reported and objective estimates. Partial correlations between assessments of activity energy expenditure (kcal · min(-1)) did not differ significantly by age (13-14 years: r = 0.41; 15-16 years: r = 0.42) or weight status (normal weight: r = 0.42; overweight: r = 0.39). The magnitude of the association was significantly affected by sex (Δr = 0.11; P < 0.05). The agreement was significantly higher in males than in females. The relationship between activity energy expenditure assessed by the objective method and the 3-day diary was moderate (controlling for weight, correlations ranged between 0.33 and 0.44). However, the 3-day diary revealed less agreement in specific group analyses; it markedly underestimated activity energy expenditure in overweight/obese and older adolescents. The assessment of activity energy expenditure is complex and may require a combination of methods.  相似文献   

11.
This study compared the physiological responses (oxygen consumption and energy expenditure) of Nordic Walking to regular walking under field-testing conditions. Eleven women (M age = 27.1 years, SD = 6.4) and 11 men (M age = 33.8 years, SD = 9.0) walked 1,600 m with and without walking poles on a level, 200-m track. For women, Nordic Walking resulted in increased oxygen consumption (M = 14.9 ml x kg(-1) x min(-1), SD = 3.2 vs. M = 1 7.9 ml x kg(-1) min(-1), SD = 3.5; p < .001), caloric expenditure (M = 4.6 kcal x min(-1), SD = 1.2 vs. M = 5.4 kcal x min(-1), SD = 1.2; p < .001), and heart rate (M = 113.7 bpm, SD = 12.0 vs. M = 118.7 bpm, SD = 14.8; p < .05) compared to regular walking. For men, Nordic Walking resulted in increased oxygen consumption (M = 12.8 ml x kg(-1) min(-1), SD = 1.8 vs. M = 15.5, SD =3.4 ml x kg(-1) min(-1); p < .01), caloric expenditure (M = 5.7 kcal x min(-1), SD = 1.3 vs. M = 6.9 kcal x min(-1), SD = 1.8; p < .001), and heart rate (M = 101.6 bpm, SD = 12.0 bpm vs. M = 109.8 bpm, SD = 14.7; p < .01) compared to regular walking. Nordic Walking, examined in the field, results in a significant increase in oxygen use and caloric expenditure compared to regular walking, without significantly increasing perceived exertion.  相似文献   

12.
To determine the daily energy requirements of professional soccer players during a competitive season, we measured total energy expenditure in seven players (age 22.1+/-1.9 years, height 1.75+/-0.05 m, mass 69.8+/-4.7 kg; mean +/- s) using the doubly labelled water method. Energy intake was simultaneously estimated from 7 day self-report dietary records. Mean total energy expenditure and energy intake were 14.8+/-1.7 MJ x day(-1) (3532+/-408 kcal x day(-1)) and 13.0+/-2.4 MJ x day(-1) (3113+/-581 kcal x day(-1)), respectively. Although there was a significant difference between total energy expenditure and energy intake (P < 0.01), there was a strong relationship between the two (r= 0.893, P< 0.01). Basal metabolic rate and recommended energy allowance calculated from the Recommended Dietary Allowances for the Japanese were 7.0+/-0.3 MJ x day(-1) (1683+/-81 kcal x day(-1)) and 15.6+/-0.8 MJ x day(-1) (3739+/-180 kcal x day(-1)), respectively. A physical activity level (total energy expenditure/ basal metabolic rate) of 2.11+/-0.30 indicated that, during the competitive season, professional soccer players undertake much routine physical activity, similar to that of competitive athletes during moderate training. Energy intake estimated using dietary records was under-reported, suggesting that its calculation from these data does not predict energy expenditure in soccer players.  相似文献   

13.
An observational method for quantifying intensity of activity was validated against min-by-min heart rates during physical education periods. The mean heart rate values increased as the activity points increased. Moderate average correlations were obtained between the min-by-min activity points and heart rates. A time series regression analysis accounted for 72% of the variance in heart rate values with a model combining heart rate in the previous min and activity points. Further work on estimates of average metabolic units for activity categories will enable future investigators to obtain more precise estimates of energy expenditure from this observation system.  相似文献   

14.
Abstract

The purpose of this study was to examine the accuracy of the ePulse Personal Fitness Assistant, a forearm-worn device that provides measures of heart rate and estimates energy expenditure. Forty-six participants engaged in 4-minute periods of standing, 2.0 mph walking, 3.5 mph walking, 4.5 mph jogging, and 6.0 mph running. Heart rate and energy expenditure were simultaneously recorded at 60-second intervals using the ePulse, an electrocardiogram (EKG), and indirect calorimetry. The heart rates obtained from the ePulse were highly correlated (intraclass correlation coefficients [ICCs] ≥0.85) with those from the EKG during all conditions. The typical errors progressively increased with increasing exercise intensity but were <5 bpm only during rest and 2.0 mph. Energy expenditure from the ePulse was poorly correlated with indirect calorimetry (ICCs: 0.01–0.36) and the typical errors for energy expenditure ranged from 0.69–2.97 kcal · min?1, progressively increasing with exercise intensity. These data suggest that the ePulse Personal Fitness Assistant is a valid device for monitoring heart rate at rest and low-intensity exercise, but becomes less accurate as exercise intensity increases. However, it does not appear to be a valid device to estimate energy expenditure during exercise.  相似文献   

15.
The aim of this study was to evaluate the utility of the RT3 accelerometer in young children, compare its accuracy with heart rate monitoring, and develop an equation to predict energy expenditure from RT3 output. Forty-two volunteers (mean age 12.2 years, s = 1.1) exercised at two horizontal and graded walking speeds (4 and 6 km.h(-1), 0% grade and 6% grade), and one horizontal running speed (8 km.h(-1), 0% grade), on a treadmill. Energy expenditure and oxygen consumption (VO2) served as the criterion measures. Comparison of RT3 estimates (counts and energy expenditure) demonstrated significant differences at 4, 6, and 8 km.h(-1) on level ground (P < 0.01), while no significant differences were noted between horizontal and graded walking at 4 and 6 km.h(-1). Correlation and regression analyses indicated no advantage of vector magnitude over the vertical plane (X) alone. A strong relationship between RT3 estimates and indirect calorimetry across all speeds was obtained (r = 0.633-0.850, P < 0.01). A child-specific prediction equation (adjusted R2 = 0.753) was derived and cross-validated that offered a valid energy expenditure estimate for walking/running activities. Despite recognized limitations, the RT3 may be a useful tool for the assessment of children's physical activity during walking and running.  相似文献   

16.
This study was designed to examine the magnitude and duration of excess postexercise oxygen consumption (EPOC) following upper body exercise, using lower body exercise for comparison. On separate days and in a counterbalanced order, eight subjects (four male and four female) performed a 20-min exercise at 60% of mode-specific peak oxygen uptake (VO2) using an arm crank and cycle ergometer. Prior to each exercise, baseline VO2 and heart rate (HR) were measured during the final 15 min of a 45-min seated rest. VO2 and HR were measured continuously during the postexercise period until baseline VO2 was reestablished. No significant difference between the two experimental conditions was found for magnitude of EPOC (t [7] = 0.69, p greater than .05). Mean (+/- SD) values were 9.2 +/- 3.3 and 10.4 +/- 5.8 kcal for the arm crank and cycle ergometer exercises, respectively. Duration of EPOC was relatively short and not significantly different (t [7] = 0.24, p greater than .05) between the upper body (22.9 +/- 13.7 min) and lower body (24.2 +/- 19.4 min) exercises. Within the framework of the chosen exercise conditions, these results suggest EPOC may be related primarily to the relative metabolic rate of the active musculature, as opposed to the absolute exercise VO2 or quantity of active muscle mass associated with these two types of exercise.  相似文献   

17.
Purpose: This study aimed to compare the energy expenditure and intensity of active video games to that of treadmill walking in children and adolescents. Method: Seventy-two boys and girls (aged 8–13 years) were recruited from local public schools. Energy expenditure and heart rate were measured during rest, during 3-km/hr, 4-km/hr, and 5-km/hr walks, and during active games (Adventure, Boxing I, Boxing II, and Dance). During walking and active games, we also assessed physical activity using an accelerometer. Results: The energy expenditure of the active games Adventure, Boxing I, Boxing II, and Dance was similar to that of treadmill walking at 5 km/hr in boys and girls. Heart rate was significantly higher for the game Adventure compared with walking at 3 km/hr, 4 km/hr, and 5 km/hr and the game Dance in both genders. The heart rate of girls during the games Adventure and Dance was significantly higher compared with boys. There was a statistically significant difference (< .05, with an effect size ranging from 0.40 to 3.54) in the counts·min?1, measured through accelerometry, between activities. Conclusion: XBOX 360 Kinect games provide energy expenditure and physical activity of moderate intensity for both genders. The use of active video games can be an interesting alternative to increase physical activity levels.  相似文献   

18.
The aims of this study were to quantify the effects of factors such as mode of exercise, body composition and training on the relationship between heart rate and physical activity energy expenditure (measured in kJ?·?min?1) and to develop prediction equations for energy expenditure from heart rate. Regularly exercising individuals (n = 115; age 18?–?45 years, body mass 47?–?120?kg) underwent a test for maximal oxygen uptake ([Vdot]O2max test), using incremental protocols on either a cycle ergometer or treadmill; [Vdot]O2max ranged from 27 to 81?ml?·?kg?1?·?min?1. The participants then completed three steady-state exercise stages on either the treadmill (10?min) or the cycle ergometer (15?min) at 35%, 62% and 80% of [Vdot]O2max, corresponding to 57%, 77% and 90% of maximal heart rate. Heart rate and respiratory exchange ratio data were collected during each stage. A mixed-model analysis identified gender, heart rate, weight, [Vdot]2max and age as factors that best predicted the relationship between heart rate and energy expenditure. The model (with the highest likelihood ratio) was used to estimate energy expenditure. The correlation coefficient (r) between the measured and estimated energy expenditure was 0.913. The model therefore accounted for 83.3% (R 2) of the variance in energy expenditure in this sample. Because a measure of fitness, such as [Vdot]O2max, is not always available, a model without [Vdot]O2max included was also fitted. The correlation coefficient between the measured energy expenditure and estimates from the mixed model without [Vdot]O2max was 0.857. It follows that the model without a fitness measure accounted for 73.4% of the variance in energy expenditure in this sample. Based on these results, we conclude that it is possible to estimate physical activity energy expenditure from heart rate in a group of individuals with a great deal of accuracy, after adjusting for age, gender, body mass and fitness.  相似文献   

19.
We measured the effects of stride rate, resistance, and combined arm-leg use on energy expenditure during elliptical trainer exercise and assessed the accuracy of the manufacturer's energy expenditure calculations. Twenty-six men and women (M age = 29 years, SD = 8; M body weight = 73. 0 kg, SD = 15.2) participated. Twenty-two participants performed two tests, one without the arm poles (leg-only) and the other with arm poles (combined arm-leg). The other 4 participants performed one test without the arm poles. Both tests consisted of six 5-min stages (two stride rates, 110 and 134 stridesmin-1, and three resistance settings: 2, 5, and 8). Steady-state oxygen uptake (VO2), minute ventilation (VE), heart rate (HR) and rating of perceived exertion (RPE) were measured. Repeated measures analysis of variance determined higher (p <. 001) VO2, VE, and RPE, but not HR, during combined arm-leg versus leg-only exercise at any given intensity. Increases in stride rate and resistance increased VO2, VE, RPE, and HR with the greatest effect on VE and HR from Levels 5 to 8. The manufacturer's calculated energy expenditure was overestimated during both tests. Although the oxygen cost for elliptical trainer exercise was calculated to be approximately 0.1 mlxkg(-1) per stride and 0.7 mlxkg(-1) min-1 per resistance level, VO2 varied widely among individuals, possibly due to differences in experience using the elliptical trainer gender, and body composition. The elliptical trainer offers (a) a variety of intensities appropriate for most individuals and (b) both arm and leg exercise. Due to the wide variability in VO2, predicting the metabolic cost during elliptical trainer exercise for an individual is not appropriate.  相似文献   

20.
Predicting activity energy expenditure using the Actical activity monitor   总被引:1,自引:0,他引:1  
This study developed algorithms for predicting activity energy expenditure (AEE) in children (n = 24) and adults (n = 24) from the Actical activity monitor. Each participant performed 10 activities (supine resting, three sitting, three house cleaning, and three locomotion) while wearing monitors on the ankle, hip, and wrist; AEE was computed from oxygen consumption. Regression analysis, used to create AEE prediction equations based on Actical output, varied considerably for both children (R2 = .45-.75; p < .001) and adults (R2 = .14-.85; p < .008). Most of the resulting algorithms accurately predicted accumulated AEE and time within light, moderate, and vigorous intensity categories (p > .05). The Actical monitor may be useful for predicting AEE and time variables at the ankle, hip, or wrist locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号