首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 504 毫秒
1.
如果不等式是一个n元对称式,那么应用逐步调整法来证明有时显得较方便。下面通过两个例子的分析来说明这方法的意义。例1 已知a_1,a_2,…,a_k,…为两两各不相同的正整数,求证:对任何正整数n,下列不等式成立: sum from k=1 to n (a_k/k~2)≥sum from k=1 to n (1/k). (第二十届国际数学竞赛试题第5题) 证:(1) 如果已知数列恰好满足条件: a_1相似文献   

2.
数学题中,有这样两类等式的证明题,一类是sum form 1-1 to n(f(i))=g(n),另一类是multiply from 1-1 to nf(i)=g(n),本文分别给出这两类等式的统一证法。 定理1 等式sum from 1-1 to nf(i)=g(n)对任何自然数n都成立的充要条件是:f(1)=g(1),f(i)=g(i)-g(i-1),i=2,3,…,n。  相似文献   

3.
杨瑞强 《数学教学》2012,(11):30-31
我们把形如sum from k=1 to n f(k)相似文献   

4.
<正> §1 设f(z)在⊿:|z|<1中解析,且满足f(o)=1-f′(o)=0,记其全体为止A·S·,K, C分别为其星象,凸象和近于凸象子类。对于f(z)=Z+sum from k=2 to ∞(a_kz~k∈A,δ≥0,称 Nδ(f)={g(z)=z+sum from k=2 to ∞(b_kz~k∈A:sum from k=2 to ∞(k|a_k-b_k|≤δ} 为f的δ一邻域。 设F(z),G(z)是⊿中的单叶函数,F(z){G(z)(z∈⊿),F(o)=G(o)=1, 存在}记  相似文献   

5.
设U_(en)和V_(en)是广Lucas数,用发生函数的方法得到方幂和sum from k=1 to n(U~R_(ek)和sum from k=1 to n(U~_(-ek)),以及正负相间方幂和sum from k=1 to n((-1)~kU~r_(ek))和sum from k=1 to n((-1)~kU~r_(-ek))的计算公式.  相似文献   

6.
数列级数sum from k=1 to n(km+1)(m=0,1,2,…),是最基本的级数,在高中数学中所占比例虽然不多,但却是学生学习过程中的一个难点.本文从数表的角度介绍了级数sum from k=1 to n(km+1)(m=0,1,2,…)的另一求法.  相似文献   

7.
本文给出第2类Stirling数,Bernoulli数与Euler数的解析表示式: s_2(m+1,n)=(-1)~n/n1 sum form j=1 to n(-1)~j(?)_j~(-m+1) B_n=sum form k=1 to n 1/(k+1) sum form j=1 to k (-1)~j(?)_j~(-n) E_(2n) =1/(2n+1)[sum from p=0 to n-1 sum from k=1 to 2(n-p) sum from j=1 to k (-1)~(j-1)/(k+1)·(?)(?)(4j)~2(n-p)+4n+1]因此解决了它们的计算问题。  相似文献   

8.
设n是正整数,bk(n)表示n的k次根部分.利用初等和解析方法研究了级数sum from ∞ to n=1 1/(a3s(n))(n)和sum from ∞ to n=1 1/(bks(n))的收敛性以及sum from to n=≤x a3k(n)和sum from to n=≤x bkt(n)的均值性质,并给出渐近公式.  相似文献   

9.
现行高中代数教材中,一些与自然数有关的等式或不等式的证明,常采用用数学归纳法。本文介绍“逐项比较法”来证,思路清晰,通俗易懂且富有新意。其理论依据是: 命题1 若sum from k=1 to n a_k=f(n),sum from k=1 to n b_k=g(n)且  相似文献   

10.
文[1]推广了Bellman.R获得的正定矩阵A、B的迹的不等式:2tr(AB)≤tr(A~2)+tr(B~2)(*);tr(AB)≤[tr(A~2)]~(1╱2)·[tr(B~2)]~(1╱2)(**)。本文在两两相乘可交换的条件下给出更一般的不等式:tr(multiply from i=1 to m (A_i~(ai))≤sum from i=1 to m (a_i)·tr(A_i)(a_i〉0,sum from i=1 to m (a_i)=1);sum from 1-i to m(-tr) multiply from j=1 to k(A_(i-j))≤multiply from j=1 to k[sum from i=1 to m (tr(A_i~(β_i)]~(β~1)(β〉0,sum from j=1 to k(β=1))。  相似文献   

11.
设 a≠1,记 S_n~(0)=(sum ∑ from k=1 to n)ak=(a(1-a~n))/(1-a),S_n~(1)=(sum ∑ from k=1 to n)kak=(a(1-a~n))/(1-a)~2-(na~(n+1))/(1-a),S_n~(m))=(sum ∑ from k=1 to n)kmak(m∈N)  相似文献   

12.
在本文中,如同线性方程组的理论那样,我们建立线性矩阵方程AX=B(XA=B)的理论,其中A是mxn矩阵,X是n×s(s×m)未知矩阵,B是m×s(s×n)矩阵。我们还建立线性矩阵方程sum from j=1 to k(A j Xj=B)(sum from j=1 to k(XjAj=B))的理论,其中Aj(j=1,2,…,k)是m×n j(mj×n)矩阵,Xj(j=1,2,…,k)是nj×s(s×mj)未知矩阵,B是m×s(s×n)矩阵,最后,我们指出,可以建立线性矩阵方程组sum from j=1 to k (Ai jX jBi) (sum from j=1 to k (Xj Ai j=Bi))(i=1,2,…,t)的理论。我们在域F上讨论这些问题。  相似文献   

13.
自然数方幂和S_k(n)=sum from m=1 to n m~k的表达式,伯努利于1713年就已给出,而对自然数方幂迭乘和 sum from m=1 to n m~kC_n~m=1~kC_n~1 2~kC_n~2 … n~kC_n~n ①(其中k,n为任意自然数),我们只见到一些特例,即k=0时,sum from m=1 to n C_n~m=2~n;k=1时,sum from m=1 to n mC_n~m=n·2~(n-1)等等。而当k为任意自然数时,尚未见到一般的直接计算公式。本文记 R_k(n)=sum from m=0 to n m~kC_n~m,可以利用待定系数法,简便地导出它的直接计算公式。  相似文献   

14.
15.
关于五个裴波那契公式的推广   总被引:1,自引:0,他引:1  
公式(sum ∑ from k=1 to n)f_k=f_(n+2)-f_2,(sum ∑ from k=1 to n)f_(2k-1)=f_(2n)-(f_2-f_1)(sum ∑ from k=1 to n)f_(2k)=f_(2n+1)-f_1,(sum ∑ from k=1 to n)f_k~2=f_nf_(n+1)(sum ∑ from k=1 to n)f_kf_(k+1)=1/2(f_(n+2)~2-f_nf_(n+1)- 中,我们把前三个关于任意的裴波那契序列公式(即 f_n=f_(n-1)+f_(u-2),f_1=a,f_2=b)推广到二阶线性递推序列(即 f_n=pf_(n-1)+qf_(n-2),f_1=a,f_2=b,p,q,a,b 均为实数);把后两个公式推广到任意的裴波那契序列中去.  相似文献   

16.
寻找求sum from i=1 to n i~k值的方法,研究得不浅[1-9]都有介绍。这里仅用微积分的最基本知识推出较简便的自然数幂之和的求值递推公式:S_n~(k 1)=(k 1)[integral from n=0 to n(S~k(x)dx)-n integral from n=-1 to 0 (S~k(x)ds)。其中S~k(x)是S_n~k=sum from i=1 to i~k的派生函数。  相似文献   

17.
<正> 不等式(1)通常称为柯西(Cauchy)不等式。有关这个不等式,已有不少中学数学杂志论及,本文在这里主要通过实例来说明它在解数学竞赛题时所起的重要作用,以及如何利用柯西不等式来解题,从而为中学数学课外活动提供一点辅导资料。 例1 已知a_1,a_2,…,a_k,…为两两各不相同的正整数,求证对任意正整数n,都有 sum from k=1 to n(a_k/k~2)≥sum from k=1 to n(1/k) (3) (第20届国际数学竞赛题,1978年)  相似文献   

18.
本文得到下面结论:设n,b,r为正整数,丢番图方程sum from k=0 to∞(1/n)(b-21k)~r=sum from k=1 to∞(1/n)(b+21k)~r仅有正整数解r=1,b=21n(n+1)和r=2,b=42n(n+1)  相似文献   

19.
本文证明了对任何正整数n,q,r,方程sum from k=0 to n(x-qk)~r=sum from k=1 to n(x+qk)~r仅有正整数解:r=1,x=qn(n+1);r=2,x=2qn(n+1)。  相似文献   

20.
高中数学学过 C_n~0+C_n~1+C_n~2+…+C_n~n=2~n, C_n~1+2C_n~2+…+nC_n~n=n·2~(n-1), 即sum from j=0 to n C_n~j=2~n,(1) sum from j=0 to n jC_n~j=n·2~(n-1)。(2)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号