首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
176 5年 ,著名数学家 Euler建立了关于三角形外接圆半径 R与内切圆半径 r的一个重要不等式 [1 ]R≥ 2 r. ( 1 )文 [2 ]给出上述不等式一个十分漂亮的加强形式R≥ 2 r+ 18R[( a- b) 2 + ( b- c) 2 + ( c- a) 2 ],( 2 )其中 a,b,c为三角形的三边长 .本文进一步加强 Euler不等式并给出其逆向形式 .定理  a,b,c,R,r分别为△ ABC的三边长、外接圆半径、内切圆半径 ,则11 6 R( | a- b| + | b- c| + | c- a| ) 2 + 2 r≤ R≤ 2 r+ 11 6 r( | a- b| + | b- c| + | c- a| ) 2 .( 3)证明  ( 3)式中左边不等式等价于R- 2 r- 11 6 R( | a- b| + …  相似文献   

2.
1978年,B.M.Milisavljevic建立关于三角形边长a、b、c与外接圆半径R、内切圆半径r的一个几何不等式[1]Rr≥31∑ba+c.(1)Milisavljevic不等式形式优美,且加强了著名的Euler不等式[2]R≥2r,引起了不少人的兴趣.1996年,宋庆先生撰文[2]指出,Milisavljevic不等式强于不等式Rr≥43∑b+ac;(2)该文中,作者建立了一个较(2)式强但与Milisavljevic不等式不分强弱的不等式Rr≥98???∑b+a c???2.(3)本文统一加强上述不等式,并给出一个逆向不等式.定理设a、b、c为△ABC的三边长,s、R、r分别为三角形的半周长、外接圆半径、内切圆半径,则29???∑s?a…  相似文献   

3.
近日,笔者发现了关于三角形不等式的如下一个基础性结论:定理在△ABC中,a,b,c为其三边长,p为其半周长,R,r分别为其外接圆和内切圆半径,则有.  相似文献   

4.
设三角形的内切圆和外接圆的半径分别为r和R,则2r≤R。对于上述著名的欧拉不等式,本文给出它的一个链,同时还给出欧拉不等式在四边形中的推广及其链。一、欧拉不等式的链定理1 设三角形的内切圆和外接圆的半径分别为r和R,三边为a、b、c,则2r≤(abc/(a+b+c))~(1/2)≤R。  相似文献   

5.
<正>近日,笔者发现了一个关于三角形边长的不等式链,现介绍如下.命题在△ABC中,a,b,c分别为其三边长,R,r分别为其外接圆和内切圆半径,则有a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc≥(4-2r/R)abc≥3abc.证明先证明a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc.  相似文献   

6.
<正>近日,笔者发现了涉及三角形各边上的高及旁切圆半径的两个对偶恒等式.定理在△ABC中,a,b,c分别为其三边长,R,r分别是它的外接圆半径和内切圆半径,ra,rb,rc分别为三边上的旁切圆半径,ha,hb,hc分别为三边上的高.则有:  相似文献   

7.
著名的Gerretsen不等式是:若s、R、r为△ABC的半周长及外接圆、内切圆半径,则16r-5r~2≤s~2≤4R~2+4Rr+3r~2 (1) 不等式(1)在证明三角不等式时有着广泛的应用。本文先给出s~2≤4R+4Rr+3r的一个加强: 命题1 s~2≤R(4R+r)~2/2(2R-r) (2) 证明 设a、b、c为△ABC三边长,将三角形中恒等式s-a=r/tg(A/2)和a=2RsinA相加,整理得:  相似文献   

8.
本文研究一道三角形不等式的几何背景。 定理 若△ABC的三边、外接圆半径、内切圆半径分别为a、b、c、R、r,则有  相似文献   

9.
<正>众所周知,在△ABC中,若R、r分别为其外接圆和内切圆半径,则有R≥2r.这是著名的Euler不等式,本文给出其三个仅与边相关的最新加强.命题1在△ABC中,a、b、c为其三边长,R、r分别为其外接圆和内切圆半径,则有R/2r≥(b~2+c~2)/2bc.(1)证明记S为△ABC面积,由熟知的三角恒等式abc=4RS及S=(1/2)r(a+b+c)知,  相似文献   

10.
文[1]提出了100个待解决的不等式猜想问题,其中第95题是:设锐角三角形的三边长、三傍切圆半径、内切圆半径和外接圆半径分别为 a、b、c、r_a、r_b、r_c、r、R.则 r_a/r_b r_b/r_c r_c/r_a≥1 R/r (1)本文将证明此猜想.证明:令 a=y z,b=z x,c=x y,则 x、y、z>0,  相似文献   

11.
文[1]提出了100个待解决的不等式猜想问题,其中第95个问题是:设锐角三角形的三边长、三旁切圆半径、内切圆半径和外接圆半径分别为a、b、c、r_a、r_b、r_c、r、R,则r_a/r_b r_b/r_c r_c/r_a≥1 R/r.文[2]给出了此猜想的肯定性质证明.本文介绍此猜想的一个类似  相似文献   

12.
本文利用一个三角恒等式证明三角形的面积公式b,c为△ABC的三边长,p=1/2(a+b+c)是半周长,S是面积. 证明:如图1,⊙I是△ABC的内切圆,半径为r.在Rt△IFA中.tan A/2=IF/FA=r/(p-a)同理tanC/2=r/(p-b), tanC/2=r/(p-c). 证明中要用到三角恒等式tanA/2·tanB/2  相似文献   

13.
<正>命题在△ABC中,a、b、c分别为其三边长,R、r分别为其外接圆和内切圆半径,则有a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc≥4-2r()Rabc≥3abc.证明先证明a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc.由于a、b、c是三角形的三边长,所以有a+b>c,即a+b-c>0,同理有b+c-a>0,c+a-b  相似文献   

14.
欧拉不等式是指:若三角形的内切圆和外接圆半径分别为r和R,则R≥2r。将此不等式推广到四边形中,有: 定理设双圆四边形(既有内切圆又有外连圆的四边形的内切圆和外接圆的半径分别为r和R,则 R≥2~(1/2)r ①分析如图,设ABCD为双圆四边形,边长依次为a、b、c、d,令AC=u,则 u=((ac bd)(ad bc)/(ab cd))~(1/2) (参见[3]) 设ABCD的面积为△,则△A=rs,其中s=1/2(a b c d)∴r=△/s。  相似文献   

15.
丁遵标 《中等数学》2007,(11):15-16
笔者通过对周界中点三角形边长之间的关系的研究,得到下面一个有趣的性质. 命题 设△DEF是△ABC的周界中点三角形,且△ABC的三边长分别为a、b、c,半周长为p,面积为S,外接圆半径为R,内切圆半径为r,EF=a1,FD=b1,DE=c1,∑表示循环和.则  相似文献   

16.
笔者最近发现,三角形有一个性质,介绍如下,请伺行指正:定理锐角三角形的垂心到三顶点的距离之和等于这个三角形外接圆与内切圆直径之和;钝角三角形垂心到两锐角顶点距离之和减去垂心到钝角顶点距离等于该三角形外接圆与内切圆直径之和.证明设三角形的三边为a、b、c,垂心为H,外接圆与内切圆半径分别为R和r.如图建立直角坐标系,则C(0,0)、A(b,0)、B(αcosCαsinC),无论是锐角还是钝角三角形,直线AH、BH的方程分别为由此得垂心坐标为应用距离公式,余弦定理及正弦定理得:于是,当△ABC为锐角三角形时|HA|注意到当△…  相似文献   

17.
关于垂足三角形旁切圆半径之间有下面一个恒等式: 定理 若△ DEF 是锐角△ ABC 的垂足三角形,且 BC = a,CA = b,AB = c , p = (a b c) /2, △ ABC 的面积、外接圆半径、内切圆半径分别为? 、R 、r ,△ DEF 的旁切圆半径依次为rd 、re 、rf ,则有 rd = re =  相似文献   

18.
<正>设△ABC的三边为a、b、c,外接圆和内切圆半径分别为R、r,则有著名的欧拉不等式R≥2r.文\[1\]中建立了如下三角形式的加强.定理1设R、r分别为△ABC的外接圆和内切圆半径,则有(Σ表示循环和)■当且仅当△ABC为正三角形时取等号.由于式(1)可改写为■,由熟知的不等式■,可知式  相似文献   

19.
V.Ocordon曾给出了三角形的高与边长之间的不等式[1]:∑a2/h2b+h2c≥2 ① (关于△ABC三边及其边上的高的循环不等式,a、b、c为△ABC的三边,ha、hb、hc为对应边上的高,R、r分别为△ABC外接圆半径和内切圆半径)  相似文献   

20.
文[1]建立了如下关于三角形中线长的一个有趣的不等式:若ma,mb,mc分别是△ABC的三条中线长,R、r为△ABC外接圆和内切圆半径,则有22222ma mb mc rbc+ca+ab≥+R.研究发现并获得如下加强形式及其对偶不等式.1加强定理1若ma,mb,mc分别是△ABC的三条中线长,则有22294ma mb mcbc+ca+ab≥.(1)为证定理1,先引入以下引理:引理1设a,b,c>0,则有(b+c?a)(c+a?b)(a+b?c)≤abc.(2)(1983年瑞士数学竞赛试题)引理2设a,b,c为三角形的三边长,则有(3a?b?c)(3b?c?a)(3c?a?b)≤(b+c?a)(c+a?b)(a+b?c)(3)与a3+b3+c3+9abc≤2(a2b+b2c+c2a)+2(ab2+bc2+ca2).(4)简…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号