首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While the purposes of design and science are often different, they share some key practices and processes. Design-based science learning, which combines the processes of engineering design with scientific inquiry, is one attempt to engage students in scientific reasoning via solving practical problems. Although research suggests that engaging students in design-based science learning can be effective for learning both science process and content, more research is needed to understand how to overcome what Vattam and Kolodner (Pragmatics and Cognition 16:406–437, 2008) called “the design–science gap.” This study, therefore, takes a first step at systematically delving into this issue of bridging the design–science gap by examining the problem-solving strategies that students are using when they solve a prototypical design task. Videotaped performance assessments of high and low performing teams were analyzed in depth. Results suggest that students use both science reasoning strategies (e.g., control of variables) and design–focused strategies (e.g., adaptive growth). However, the strategies commonly associated with success in science (e.g., control of variables) did not necessarily lead to success in design. In addition, while both science reasoning strategies and design–focused strategies led to content learning, the content learned was different.  相似文献   

2.
Children using robotics for engineering, science, technology, and mathematics (CREST-M) is an ongoing curriculum creation and evaluation project developing math-focused science, technology, engineering, and mathematics (STEM) curriculum units that incorporate storytelling with math and are designed to be engaging for students from backgrounds traditionally underrepresented in STEM fields and to be appropriate for all ability levels including the gifted. This mixed-methods study evaluated one CREST-M unit, The Tale of the Monarchs, aligned to the Common Core State Standards: Mathematics (CCSS-M) for fourth- and fifth-grade fractions while incorporating all aspects of STEM. The unit includes an engineering design loop to help students create and program robots using LEGO WeDo 2.0. Students also use the scientific method in a problem-based learning (PBL) investigation in which they design and conduct experiments. The unit features a comprehensive storyline in which diverse characters solve real-world problems using STEM skills. The curriculum was evaluated through a CCSS-M aligned pre- and post-assessment of students’ understanding of fractions, the Cognitive Abilities Test Screening Form 7 (CogAT 7), and the Draw-a-Scientist pre- and post-assessment. The curriculum led to significant and meaningful gains in math achievement (Cohen’s d = 0.72) consistent for students at multiple ability levels (including high ability) and children from groups traditionally represented in STEM fields as well as those traditionally underrepresented (across gender, race, and socioeconomic status). In addition, the mental models of the career of a scientist that students articulated before the program were markedly more complex and less stereotypical following the program, indicating increased understanding of the career of a scientist.  相似文献   

3.
The purpose of this study was to examine the use of an emerging technology called augmented reality to teach science vocabulary words to college students with intellectual disability and autism spectrum disorders. One student with autism and three students with an intellectual disability participated in a multiple probe across behaviors (i.e., acquisition of science vocabulary words) design. Data were collected on each student's ability to define and label three sets of science vocabulary words (i.e., bones, organs, and plant cells). The results indicate that all students acquired definition and labeling knowledge for the new science vocabulary terms. Results are discussed in the context of applying universal design principles with emerging technologies to create authentic opportunities for students with intellectual disabilities and autism spectrum disorders to learn science vocabulary. (Keywords: augmented reality, autism, intellectual disability, science vocabulary, universal design for learning)  相似文献   

4.
浅述了全英文教学在拓宽学生视野、增强学生国际化竞争力等方面的重要作用以及现阶段存在的主要问题。结合理工科全英文教学背景,从教学理念、教学内容、教学组织三个方面,阐述如何融合国内外教育资源,解决教育理念、教育方式和受教育群体习惯思维带来的全英文教学瓶颈问题。  相似文献   

5.
High school science teachers, of course, want to motivate their students to consider studying science and engineering (S&E) in college. However, many high school students are not familiar with what science and engineering actually entail. They may know science as little more than “systematic discovery” and engineering as nothing but “math-intensive design.” Without appreciation for the rich culture of science and engineering, students will be unlikely to choose such a field of study. The Discovery Channel television show Mythbusters helps remedy the lack of understanding many people, especially young people, have about S&E. Mythbusters presents a highly accurate vignette of the culture of science and engineering. Episodes of the show were analyzed for instances in which the culture of science and engineering was accurately depicted. Many resources, including several publications of the National Research Council, informed the media analysis. To encourage more high school students to pursue S&E in college, they need to be exposed to the culture of S&E. Mythbusters provides a window into the often unseen realm of science and engineering, allowing its viewers, who are disproportionately represented among the young adult age bracket, to see what it means to conduct science and engineering on a routine basis. High school science instructors should look to Mythbusters to provide insight into the culture of S&E that textbooks often have difficulty conveying to students.  相似文献   

6.
Previous research suggests that in classes that take an integrated approach to science, technology, engineering, and math (STEM) education, students tend to engage in fulfilling goals of their engineering design challenges, but only inconsistently engage with the related math and science content. The present research examines these inconsistences by focusing on student engagement, or effort, towards math and science concepts while working on an engineering challenge, through the lens of expectancy-value theory. Specifically, we examine how students’ perceptions of the value of math and science and expectancy for success with the math and science relate to the efforts they put towards using math and science while working on engineering challenges. Our results suggest that subjective task value significantly predicts efforts towards both math and science, whereas neither expectancy, nor the interaction between expectancy and value predicted effort. We argue that integrated learning environments need to help students understand how the domains of math, science, and engineering support their work in fulfilling the engineering project design goals. In other words, we argue that we, as educators, must help students to recognise the value of each of the domains addressed within STEM integrated learning environments. This paper discusses strategies for accomplishing this goal.  相似文献   

7.
In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.  相似文献   

8.
Internationally there is a need for research that focuses on STEM (Science, Technology, Engineering and Mathematics) education to equip students with the skills needed for a rapidly changing future. One way to do this is through designing engineering activities that reflect real-world problems and contextualise students’ learning of STEM concepts. As such, this study examined the learning that occurred when fifth-grade students completed an optical engineering activity using an iterative engineering design model. Through a qualitative methodology using a case study design, we analysed multiple data sources including students’ design sketches from eight focus groups. Three key findings emerged: first, the collaborative process of the first design sketch enabled students to apply core STEM concepts to model construction; second, during the construction stage students used experimentation for the positioning of lenses, mirrors and tubes resulting in a simpler ‘working’ model; and third, the redesign process enabled students to apply structural changes to their design. The engineering design model was useful for structuring stages of design, construction and redesign; however, we suggest a more flexible approach for advanced applications of STEM concepts in the future.  相似文献   

9.
In response to international concerns about scientific literacy and students’ waning interest in school science, this study investigated the effects of a science‐writing project about the socioscientific issue (SSI) of biosecurity on the development of students’ scientific literacy. Students generated two BioStories each that merged scientific information with the narrative storylines in the project. The study was conducted in two phases. In the exploratory phase, a qualitative case study of a sixth‐grade class involving classroom observations and interviews informed the design of the second, confirmatory phase of the study, which was conducted at a different school. This phase involved a mixed methods approach featuring a quasi‐experimental design with two classes of Australian middle school students (i.e., sixth grade, 11 years of age, n = 55). The results support the argument that writing the sequence of stories helped the students become more familiar with biosecurity issues, develop a deeper understanding of related biological concepts, and improve their interest in science. On the basis of these findings, teachers should be encouraged to engage their students in the practice of writing about SSI in a way that integrates scientific information into narrative storylines. Extending the practice to older students and exploring additional issues related to writing about SSI are recommended for further research.  相似文献   

10.
The purpose of this research was to investigate the impact of engineering design classroom activities on middle‐school students’ conceptions of heat transfer and thermal energy. One eighth‐grade physical science teacher and the students in three of her classes participated in this mixed‐methods investigation. One class served as the control receiving the teacher’s typical instruction. Students in a second class had the same learning objectives, but were taught science through an engineering design curriculum that included demonstrations targeting specific alternative conceptions about heat transfer and thermal energy. A third class also used the engineering design curriculum, but students experienced typical demonstrations instead of targeted ones. Conceptual understandings of heat transfer and thermal energy and attitudes towards engineering were assessed prior to and after the interventions through interviews, observations, artefact analysis, a multiple choice assessment, and a Likert scale assessment. Results indicated that the engineering design curriculum with targeted demonstrations was significantly more effective in eliciting desired conceptual change than the typical instruction and also significantly more effective than the engineering curriculum without targeted demonstrations. Implications from this study can inform how teachers should be prepared to use engineering design activities in science classrooms for conceptual change.  相似文献   

11.
This study describes the situation of engineering colleges in Palestine (i.e. Palestinian Territories occupied by Israel since 1967). It presents data relating to the gradual progress of engineering education from 1980 to 1996, and discusses the main objectives (general and specific) set for engineering education at the time of its establishment. Factors that have affected engineering education during the last 16 years are also discussed. The study focuses on analyzing the main aspects that would clarify the reality of engineering education during the specified period. These aspects are the faculty members, curricula and syllabuses, students and admission policies, specializations and sponsorship, material capabilities, buildings and equipment, administration, institutional organization, funding and linkage to society. The study concludes by arriving at possible approaches for the development of engineering education in the future based on the anticipated changes and progress in the comprehensive national development.  相似文献   

12.
In academic mentoring research, there is a need to include empirical designs that consider more sociocultural perspectives. The purpose of this exploratory study was to race re-image academic mentoring by considering its sociocultural perspectives (i.e., intersectionality, tokenism, and awareness).For this, a qualitative-dominant, convergent mixed-methods approach was used to explore the perspectives and responses of twelve womxn graduate students and faculty involved in science and engineering research. Using multi-modal approaches that included two structured interviews and electrodermal activity (EDA) sensors, participants were asked to respond to case studies of achievement-, race-, and gender-equity through an academic mentoring lens.Our qualitative findings suggested that across the interviews, issues of power, communication strategies, and awareness are predominant themes and needs of academic mentoring in their respective disciplines. Furthermore, our quantitative findings supported the notion that throughout the interviews, varying forms of identities (e.g., social, institutional, discourse) appeared to predominate or interact throughout the cases explored. Together, the data points to the complex racial- and gender- influenced sociocultural perspectives of academic mentoring in science and engineering.  相似文献   

13.
This study seeks to understand the experiences of women of color engineering students who persist and identify some of the dilemmas they face. Evidence emerged that students formulate multiple identities to help them persist in their engineering programs. We assess the role that identity plays in the experiences of STEM (science, technology, engineering, and mathematics) women of color. This paper applies a multiple identities framework and presents students' experiences through the lenses of three emergent identities: academic, social, and intellectual. We discuss possible implications of the findings for academic and social support programs in higher education. We also identify some implications for precollege instruction.  相似文献   

14.
ABSTRACT

Modelling is a central activity in practical engineering and something that is also useful in engineering education research (EER). Additionally, qualitative research methods have found important applications in engineering research, although their use in EER has not always been widely accepted. Design science research is a qualitative research approach in which the object of study is the design process, i.e. it simultaneously generates knowledge about the method used to design an artefact and the design or the artefact itself. This paper uses techniques from design science research to analyse the method used when deriving the ‘learning of a complex concept’ (LCC) model, which we developed while designing teaching sequences for a course on electrical engineering. Our results demonstrate the value of design science research in EER and suggest that the LCC model is generally applicable in this field.  相似文献   

15.

Recent reforms in science education have supported the inclusion of engineering and their practices in K-12 curricula. To this end, many classrooms have incorporated engineering units that include design challenges. Design is an integral part of engineering and can help students think in creative and interdisciplinary ways. In this study, we examined students’ conceptions of design during and after participation in a design-based science curriculum unit. Our study was guided by the following research question: What are students’ views of design after participation in an engineering design-based science curriculum unit and how are these views reflected in their enactment throughout the unit? Using a qualitative approach, we examined students’ conversations throughout the enactment of the curriculum and interviews conducted after the completion of the unit. We found that students had complex and diverse views of design, and these views were reflected in their group discussions throughout the curriculum and design challenge. Students most frequently expressed design as learning and as a process of integration into a coherent whole. These aspects of design were also frequently observed in students’ conversations during the unit. Interestingly, we found evidence of students demonstrating several aspects of design throughout the curriculum that were not explicitly expressed during the student interviews. Taken together, these findings support the complex nature of design as seen at the middle school level.

  相似文献   

16.
Science performance is determined, to a large extent, by what students already know about science (i.e., science knowledge) and what techniques or methods students use in performing science tasks (i.e., cognitive strategies). This study describes and compares science knowledge, science vocabulary, and cognitive strategy use among four diverse groups of elementary students: (a) monolingual English Caucasian, (b) African-American, (c) bilingual Spanish, and (d) bilingual Haitian Creole. To facilitate science performance in culturally and linguistically congruent settings, the study included student dyads and teachers of the same language, culture, and gender. Science performance was observed using three science tasks: weather phenomena, simple machines, and buoyancy. Data analysis involved a range of qualitative methods focusing on major themes and patterns, and quantitative methods using coding systems to summarize frequencies and total scores. The findings reveal distinct patterns of science knowledge, science vocabulary, and cognitive strategy use among the four language and culture groups. The findings also indicate relationships among science knowledge, science vocabulary, and cognitive strategy use. These findings raise important issues about science instruction for culturally and linguistically diverse groups of students.  相似文献   

17.
当前国家正大力提倡和发展综合素质教育,泛人文知识和理工科的渗透结合已经逐渐引起了教育工作者的重视,但针对土木工程专业的职业文化教育由于其功能和作用的隐蔽性而没有引起足够的关注.结合土木工程学科的教学和实践,分析了目前高校职业文化教育的现状,从职业理想、职业道德、创新意识和学科发展等方面阐述了加强职业文化教育的现实意义,...  相似文献   

18.
19.
Research on the effectiveness of STEM-focused (science, technology, engineering, and mathematics-focused) schools and other learning experiences (e.g., short-term camps) on student outcomes is sparse. This study documented perceptions of STEM content and careers for elementary, middle, and secondary school students participating in university-based summer camps focused on robotics. Attitudes before and after the camp experiences were compared across gender groups and grade levels. Middle school students showed greater growth on the surveys compared to their elementary and secondary school peers. Implications for the design and evaluation of STEM experiences include looking at longer, more intensive experiences.  相似文献   

20.
Informal science opportunities provide authentic experiences to stimulate students’ interests in science and engineering and foster their curiosity through problem-based investigations. STEMulate Engineering Academy was designed to provide children (Grades 3–5) engineering opportunities and offer teachers a unique professional development experience. The program serves as a practicum experience for teachers seeking a gifted and talented add-on license and the camp also offers free professional development to area teachers. Using a co-teaching approach, students gained firsthand experiences from an engineer in the field, and teachers collaborated with engineers to make the content more relevant. Despite a limited number of contact hours, students and teachers demonstrated growth on pre and post engineering assessments. Informal learning opportunities provided by programs such as STEMulate Engineering Academy could possibly spark student interest in science, technology, engineering, and mathematics (STEM)––leading them to a promising career in a STEM field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号