首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
由一元二次方程根与系数的关系知道,二次三项式ax~2 bx c=a(x-x_1)(x-x_2)(?)x_1 x_2=-b/a,x_1x_2=c/a。由此可对“十字相乘法”作如下改进: 作变换ax~2 bx c=1/a[(ax)~2 b(ax) ac]。令ax=y,则ax~2 bx c=1/a(y~2 by ac)。若有x_1、x_2,使x_1x_2=ac,x_1 x_2=-b,则ax~2 bx c=1/a(y-x_1)(y=x_2)=1/a(ax-x_1)(ax-x_2),于是有定理对于二次三项式ax~2 bx c,若能找到x_1、x_2,使得ac=x_1x_2,x_1 x_2=-b,那末,ax~2 bx c  相似文献   

2.
大家知道,对于有理数系数的一元二次方程ax~2+bx+c=0(a≠0),有有理数根的条件是△=b~2-4ac为一个有理数的平方。关于求整数根问题,一般地是在以上结论基础上利用求根公式、判别式、根与系数的关系(韦达定理)等二次方程的基本理论并结合整  相似文献   

3.
一元二次方程ax~2 bx c=0(a≠0)根的判别式:Δ=b~2-4ac不仅是ax~2 bx c=0(a≠0)有无实根判断的重要依据,而且在代数的其它方面也有着广泛的应用,教师在教学中若能适当加以引导,则必能开阔学生的思路。本文仅就判别式在二次三项式的因式分解方面的应用,谈谈自己粗浅的看法。  相似文献   

4.
利用构造法解题,是较长一段时间来各类数学杂志讨论的热门。笔者认为,这些讨论对于训练思维、培养观察、联想、综合分析能力、提高解题水平,无疑是有益的。本文试图从二次式这一个角度,用构造法探求数学竞赛中有关问题,供同行们参考。二次式通常指二次方程、二次函数及二次不等式等,其主要性质有: Ⅰ.若实系数一元二次方程ax~2+bx+c=0(a≠0)有实数解,则△=b~2-4ac≥0,x_1+x_2=-(b/a),x_1·x_2=c/a,反之变然, Ⅱ.二次函数y=ax~2+bx+c(a≠0),  相似文献   

5.
一元二次方程ax~2 bx c=0(a≠0)是初中代数的重点内容,除了求根公式和韦达定理(根与系数关系)外,我们可进一步推得如下有用定理设x_1、x_1是方程ax~2 bx C=0(C≠0)的两根,则有|x_1-x_2|=△~(1/△)|a|(△=b~2-4ac)(*) (*)式的证明很简单,利用求根公式即可.但它的作用却不可小看,特别是用它求二次函数y=ax~2 bx C与x轴两个交点之间的距离较为简捷.  相似文献   

6.
判别式法     
根据b~2-4ac的值的符号可以判别一元二次方程ax~2+bx+c=0(a≠0)的根的情况,我们把b~2-4ac叫做一元二次方程的根的判别式,通常用符号"△"来表示.具体判别方法是:一元二次方程ax~2+bx+c=0(a≠0),(1)当△>0时,方程有两个不相等的实数根;(2)当△=0时,方程有两个相等的实数根;(3)当△<0时,方程没有实数根.这三  相似文献   

7.
(本讲适合初中) 对于一元二次方程ax~2 bx c=0(a≠0)的实数根的情况,可以用根的判别式△=b~2-4ac来判别,但对于它的有理数根、整数根的情况,就没有统一的方法来判别,只能对具体问题寻找具体解题方法,本文约定方程的两根为x_1、x_2(x_1≤x_2)。  相似文献   

8.
一元二次方程ax2 +bx +c =0 (a≠ 0 )的根的判别式△ =b2 - 4ac ,不仅可以判定方程实根情况 ,还可以用它判别二次三项式ax2 +bx +c因式分解的方法与范围 ,求抛物线y =ax2 +bx +c(a≠ 0 )与x轴交点的个数 ,以及证明某些几何不等式问题 ,现以有关中考试题为例 ,简述一元二次方程根的判别式的应用  相似文献   

9.
一元二次多项式 f(x)=ax~2+bx+c(其中 a≠0,系数均为实数,下同)的判别式△=b~2-4ac,在中学数学里有着广泛而灵活的应用.现将邹玉成、陈敏蘩等同志的来稿和有关资料整理发表,供高中毕业班数学总复习参考.一元二次多项式 f(x)=ax~2+bx+c 的根与它的判别式△之间满足下述条件:  相似文献   

10.
数域P上的一元二次多项式ax~2+bx+c(a≠0)在数域P上能够分解的充要条件是(b~2-4ac)~(1/2)∈P,并且当(b~2-4ac)~(1/2)∈P时,ax~2+bx+c=a[x+(b-(b~2-4ac)~(1/2))/2a)][x+(b+(b~2-4ac)~(1/2))/2a]。可是在什么条件下,数域P上的二元二次多项式f(x,y)=ax~2+bxy+cy~2+dx+ey+f (Ⅰ) (a,b,c不同时等于零)在数域P上能够分解呢?如能分解,该怎样分解呢?本文详细讨论这两个问题。  相似文献   

11.
对于实系数一元二次方程 ax~2+bx+c=0(a≠0) (*)当△=b~2-4ac≥0时有实根,且实根的分布情况常借助抛物线y=ax~2+bx+c (a≠0)与x轴的交点来实现的。当△=b~2-4ac<0时,方程(*)无实根。由于在复数范围内,任何一个实系数一元二次方程都有两个根,因此,当△=b~2-4ac<0时,方程(*)只有两个虚根且共轭。显然,这两个虚根对应的点不在x轴上。那么虚  相似文献   

12.
在一元二次方程一般式中(ax~2+bx+c=0,其中a≠0),有其根的判别式Δ=b~2-4ac,当Δ>0时有两个不等实根,当Δ=O时有两个相等实根,当Δ<0时无实根。从一元二次方程的求根公式中能更好地理解判别式本身。还可推广到利用判别式判断二次三项式是否是完全平方式,一元二次方程有有理数根的条件,有整数根的条件,从判别式自身表现的不同特征探索其用法,更有利于判  相似文献   

13.
整系数一元二次方程ax2+bx+c=0(a ≠0)有有理根的充要条件是:△=b2-4ac为一有理数的平方.而有整数根,△必为一完全平方式. 注意这里a、b、c皆为整数,前者△是有理数的平方,而非一般认为的完全平方式.而后者  相似文献   

14.
要判别有理系数一元二次方程ax~2+bx+c=0(a≠0)有无有理根,只要看它的判别式△=b~2-4ac是不是有理数的完全平方。如果a、b、c是常数,由△是否是平方数立刻可以求得,如果a、b、c不是常数,它的判别式含有参数t,当△=pt+q(p≠0)时,只要令pt+q=k~2,k是有理数,便得t=(k~2-q)/p,原方程根就是有理根,当△=pt~2+qt+k (p≠0)时,问题就没有那么简单了。本文就这种情况介绍求有理系数一元二次方程有理根的方法。预备知识第一,如果p为有理数的完全平方,即p=m~2,可设pt~2+qt+k=(mt±n)~2,整理化简得t=(n~2-k)/(q±2mn),即当(?)的有  相似文献   

15.
实系数一元二次方程ax~2 bx c=0(a≠0)或实系数一元二次多项式f(x)=ax~2 bx c(a≠0)的判别式:Δ=b~2-4ac在解题中有着非常广泛的应用,现就数学教学实践中遇到的问题,举例说明。  相似文献   

16.
如所周知,关于实系数一元二次方程Q_o:ax~2 bx c=0(a≠0)有两项重要的充要条件: 1.Q·有相异两实根△>0, Q_o有相等两实根△=0, Q_o有共轭两虚根△>0,(其中△=b~2-4ac) 2.复数x_1、x_2是方程Q_o的两根  相似文献   

17.
我们知道,对于实系数一元二次方程ax~2 bx c=0(a、b、c∈R,a≠0),可用△=b~2-4ac与0的关系来判断有无实数根,并且可用求根公式求此方程的根,那么对于复系数一元二次方程。ax~2 bx c=0(a、b、c∈C,a≠o)怎样求根,怎样判断实根的情况? 1.求根公式 命题(一):方程ax~2 bx c=0(a、b、c∈C,a≠0)的求根公式是:x=-b [(b~2—4ac)的平方根]/(2a) .  相似文献   

18.
利用平面直角坐标系可能直观看出二次函数与一元二次方程的紧密联系,一元二次方程ax~2 bx c=0(a≠0)的根就是二次函数y=ax~2 bx c(a≠0)的图象与x轴交点的横坐标,而二次函数的图象与x轴有无公共点又由判别式b~2-4ac来决定。因此,在解决有关函数的问题时,常常要用到一元二次方程的有关知识。下面例举方程知识在二次函数中的应用。 例1 二次函数y=ax~2 bx c(a≠0)在x=-1时有最小值-4,它的图象与x轴交点的横坐标分别为x_1、x_2,且x_1~2 x_2~2=10。求此二次函数的解析式。 解:由题意可知,抛物线的顶点坐标为(-1,-4),故设其解析式为y=a(x十1)~2-4(a≠0)。  相似文献   

19.
一、三次函数的图象及其性质对于三次函数 y=f(x)=ax~3+bx~2+cx+d(a≠0),我们有 y′=f′(x)=3ax~2+2bx+c.设导函数 y′=f′(x)的判别式为△=4b~2-12ac=4(b~2-3ac).(1)当 a>0时,(i)若△>0,则方程 f′(x)=0有两个不等的实根。设两实根为 x_1,x_2(x_10、f(x_2)<0)时,图象与 x 轴有三个不同的  相似文献   

20.
实系数一元二次方程ax~2 bx c=0(a≠0)的判别式△=b~2-4ac,在解题中有着十分广泛的应用。对于判别式的应用,目前已有较多的文章对此进行了论述,本文就如何正确灵活应用判别式解决某些问题举例加以说明并略作分析。判别式的应用,主要依据下述定理及其一些直接推论。实系数一元二次方程f(x)=ax~2 bx c=0(a≠0)中,令△=b~2-4ac,则有ⅰ) △>0(?)f(x)=0有两个不相等实根。ⅱ) △=0(?)f(x)=0有两个相等实根。ⅲ) △<0(?)f(x)=0有两个共轭虚根。运用判别式解题,除对于实系数二次式以外,还可适用于能通过变形或设立辅助的变数构造一元二次  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号