首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
数学美的具体体现是结构美、对称美、简洁美、奇异美 ,配偶法解题揭示了数学美之所在 ,本文例举几例与大家共赏 .1 倒数配偶例 1 已知函数 f(x)满足 2 f(x) - f(1x) =x(x≠ 0 ) ,求 f(x)的解析式 .解  2 f(x) - f(1x) =x ,①以 1x 代x得2 f(1x) - f(x) =1x.②① × 2 +②得3f(x) =2x+ 1x,∴f(x) =2x2 + 13x .例 2  (2 0 0 2年全国高考题 )已知 f(x) =x21+x2 ,则f(1) + f(2 ) + f(12 ) + f(3) + f(13) + f(4) +f(14 ) =.解 由 f(x) =x21+x2 得 f(x) + f(1x) =1,∴f(1) + f(2 ) + f(12 ) + f(3) + f(13) + f(4)  + f(14 ) =12 + 1+ 1+ 1…  相似文献   

2.
赵坚 《当代电大》2004,(12):43-52
第 1章 函数1 例题解析例 1:设 f(x) =x +1,则 f(f(x) +1) =(   ) . A x      B x+1 C x+2 D x+3解 :由于 f(x) =x+1,得    f(f(x) +1) =(f(x) +1) +1=f(x) +2将 f(x) =x+1代入 ,得    f(f(x) +1) =(x+1) +2 =x+3例 2 :下列函数中 ,(   )不是基本初等函数 . A y=(1e) x     B y=lnx2 C y=sinxcosx D y=3x5解 :因为y=lnx2 是由y=lnu ,u =x2 复合组成的 ,所以它不是基本初等函数 .例 3:设函数 f(x) =cosx ,x ≤ 00 ,x >0 ,则 (   ) . A f(- π4 ) =f(π4 ) B f(0 ) =f(2π) C f(0 ) =f(- 2π) D f(π…  相似文献   

3.
第 31届西班牙数学奥林匹克第 2题是 :证明 :如果 ( x+ x2 + 1 ) ( y+ y2 + 1 )=1 ,那么 x+ y=0 .分析 注意到式子 x+ x2 + 1 ,y+y2 + 1的结构完全相同 ,我们引进函数f( x) =x+ x2 + 1 .容易知道函数 f( x)具有以下性质 :1 f( x) f( - x) =1 ;2 f( x)在定义域 R上是增函数 .(对于性质 2 ,只需把 f ( x1 ) - f ( x2 )化为 ( x1 - x2 ) x21 + 1 + x22 + 1 + x1 + x2x21 + 1 + x22 + 1,利用 x21 + 1 + x22 + 1 + x1 + x2 >| x1 | + | x2 |+ x1 + x2 ≥ 0即可证得 .)显然 ,原竞赛题就是证明 :如果 f ( x) f ( y) =1 ,那么 x+ y=0 .现在简证如…  相似文献   

4.
有一类抽象函数问题 ,常把与抽象函数有关的等式作为条件 ,在高考试题中频繁出现 ,怎样利用好这些等式是解决此类问题的关键 .本文介绍处理这类问题的几种解题策略 .一、利用递推关系与抽象函数有关的等式看作递推式 ,利用其递推关系寻找新的等式 .例 1 已知 f ( x)是定义在正整数集上的函数 ,对任意正整数 x,都有 f ( x) =f ( x - 1) +f ( x +1) ,且f ( 1) =2 0 0 2 ,求 f ( 2 0 0 2 )解 :利用 f ( x) =f ( x - 1) +f ( x +1)的递推关系可知 :f ( x +1) =f ( x) +f ( x +2 ) ,和 f ( x +2 ) =f ( x+1) +f ( x +3)两等式联立得 :f ( x +3) …  相似文献   

5.
画函数的图象、求函数的极值、判断函数的奇偶性、确定函数的单调区间等,一般都要以解析式y=f(x)为基础。因之,求出f(x)是必要的。下面介绍几种求法。一待定系数法例1.已知:f(x)为有理整函数且 f(2x)+f(3x+1)=13x~2+6x-1 求:f(x) 解:设f(x)=ax~2+bx+c 则f(2x)+f(3x+1) =13ax~2+(6a+5b)x+a+b+2c ∵ 13ax~2+(6a+5b)x+(a+b+2c) =13x~2+6x-1比较系数得则f(x)=x~2-1。二换元法例2若:f[f(x)]=(x+1)/(x+2)求:f(x)  相似文献   

6.
一、通过猜想,探索问题的结果例1设f(x)=4x4x+2,求f(20105)+f(20205)+…+f(22000035)+f(22000054)的值.解析f(20105)+f(22000054)=412005412005+2+420042005420042005+2=4+2×412005+4+2×4200420054+2×412005+2×420042005+4=1.由于12005+22000045=1,于是猜想:当x1+x2=1时,是否总有f(x1)+f(x2)=1恒成立?事实上,当x1+x2=1时,有f(x1)+f(x2)=4x14x1+2+4x24x2+2=4+2×4x1+4+2×4x24+2×4x1+2×4x2+4=1.因此,原式=[f(20105)+f(22000045)]+…+[f(12000052)+f(12000035)]=1002.二、通过猜想,发现问题的解法例2求证:(1-x)2+(!3-y)2!+(2-x)2+y2!+x2…  相似文献   

7.
对于函数方程 (1 ) f (x2 +1 ) =f2 (x) +1 ,f(0 ) =0 ;(2 ) f(x) f (x +b) =f (x(x +b) +b) (b≥ 1 ) ;以及 (3) f (f(x) ) =fm (x) (m≥ 1 )给出了求实多项式解的若干方法  相似文献   

8.
文[1]利用组合变换的互逆公式证明了定理1 (Euler恒等式) sum from k=0 n (-1)~(n-k)C_n~kK~n=n!(1) 本文利用差分、微分方法,给出比定理1更一般的几个结论, 定义如果f(x)是x的多项式,那么多项式f(x+1)-f(x)称为f(x)的差分,用△f(x)表示之;△f(x)的差分叫做f(x)的二阶差分,用△~2f(x)表示之,所以△~2f(x)=△[f(x+1)-f(x)]=f(x+2)-2f(x+1)+f(x)。又用△~3f(x)表示△~2f(x)的差分,叫做f(x)的三阶差分,显然有△~3f(x)=f(x+3)-3f(x+2)+3f(x+1)-f(x)。  相似文献   

9.
这是一堂关于函数表达式的习题课,教学对象是高一学生.问题:已知f(2x+1)=x2-2x,求f(x)与f(2x-1)的解析式.学生解法:设f(x)=ax2+bx+c(a≠0),则f(2x+1)=4ax2+(4a+2b)x+a+b+c=x2-2x.易得4a=1,4a+2b=-2,a+b+c=0,解得a=14,b=-32,c=54,所以f(x)=14x2-32x+54,f(2x-1)=x2-4x+3.师:为什么可以"设f(x)=ax2+bx+c(a≠0)"?生1:因为可以推测f(x)一定是二次函数.如果f(x)不是二次函数,则f(2x+1)的解析式也不会是二  相似文献   

10.
定理设f(x)为单调奇函数,则方程f(ax+b)+f(x)一O与方程(a二十b)十x一O同解. 证明由f(一二)~一f(x),则方程厂(ax十b)+f(x)一。可化为f(ax+b)~f(一x)‘又f(二)为单调函数,f为一一映射,故f(ax+b)一f(一x)成立的充要条件是ax+b-一x.证毕. (编者按:只是在实数范围内同解.) 例1.解方程 (x+6)工,91+x‘,,‘+Zx+6=0.‘._’解f(x)一x,‘+x为递增奇函数.故有(x十6)+x一O,原方程有唯一实根x-一3. 例2.解方程 (Zx+1)(z+丫(Zx+1),+3 +sx(2+了石压不万)一0. 解令t一3x,则原方程变为(亏+‘)(“+ +,(z+丫砰不压):考虑函数f(t)=t(2+奇函数,原方程化为了砰…  相似文献   

11.
对于函数y=f(X),本文证明了:①若满足f(a+x)=f(b-x),则其图象关于直线x=(a+b)/2对称;②若满足f(a+x)=-f(b-x),则其图象关于点((a+b)/2,0)对称;③若满足f(a+x)=f(b+x),则其周期为a-b;④若满足 f(a+x)=-f(b+x),则其周期为 2(a-b)  相似文献   

12.
一、自对称设f(x)是定义在R上的函数,则1.f(a+x)=f(b-x) f(x)的图象关于直线x=(a+b)/2成轴对称. 特例1 f(a+x)=f(a-x) f(x)的图象关于直线x=a成轴对称. 特例2 f(x)=f(-x) f(x)的图象关于直线x=0成轴对称.  相似文献   

13.
高中《数学》定义周期函数,对于函数y=f(x),如果存在一个常数T≠0,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),则函数y=f(x)叫做以T为周期的周期函数.对于周期函数y=f(x)所满足的条件f(x+T)=f(x)进行变式,一直是高中数学教学的难点和重点,由于以周期为情景设计的题目,思考的途径广,创造性要求高,解决问题的思路和手段体现了很丰富的数学思想及方法,从而深为各种类型的考试命题者所厚爱,以下将笔者在教学实践中总结的几种变式探索供参考.  一、若 f(x+T)=-f(x),则 2T是f (x)的周期,即f(x+2T)=f(x)证明:f(x+2T)=f(x+T+T)=-f(x+…  相似文献   

14.
文 [1]介绍了广义奇 (偶 )函数的概念与性质 :定义 对于函数 f(x) ,若存在常数a、b ,使得函数定义域内的任意x ,都有 f(a+x) =- f(b-x)成立 ,则称 f(x)为广义奇函数 ;若存在常数a、b ,使得函数定义域内的任意x ,都有 f(a+x) =f(b -x)成立 ,则称 f(x)为广义偶函数 ,性质 对于函数 f(x)定义域的任意x ,f(a+x) =- f(b-x) f(x)的图像关于点 (a+b2 ,0 )对称 ;对于函数 f(x)定义域内的任意x ,f(a+x) =f(b-x) f(x)的图像关于直线x =a+b2 对称 .实际上 ,将上述广义奇 (偶 )函数 f(x)的图像平移 n=(- a +b2 ,0 ) ,即成为对应的奇 (偶 )函数的图…  相似文献   

15.
一、拼凑法形如f[h(x)]=g(x)的结构,通过对g(x)进行观察、分析、变形,转化为关于h(x)的多项式,用x替换h(x)即得函数的解析式.例1已知函数f(x)满足:f(x-x1)=x2+x12,求f(x).解∵f(x-x1)=x2+x12=(x-1x)2+2,∴设x-x1=t,则有f(t)=t2+2.∴f(x)=x2+2.二、换元法形如f[h(x)]=g(x)的结构,可设h(x)=t,解出x,代入g(x)进行换元来解,以达到求f(x)的目的.例2已知f(11+-xx)=x(x≠-1),求f(x).解设1-x1+x=t,则x=11+-tt.∵f(t)=11+-tt,∴f(x)=11-+xx(x≠-1).三、待定系数法在求一个函数时,如果知道这个函数的一般形式,可先把所求函数写成一般形式,其中系数待定…  相似文献   

16.
三、代数部分1.求所有实函数f、g、h :R→R ,使得对任意实数x、y ,有(x -y)f(x) +h(x) -xy +y2 ≤h(y)≤(x -y)g(x) +h(x) -xy +y2 .①(第 5 3届罗马尼亚数学奥林匹克 (第一轮 ) )解 :由式①得(x -y)f(x) ≤(x -y)g(x) .易知f(x) =g(x)对所有实数x均成立 .于是 ,有(x -y)f(x) +h(x) -xy +y2 =h(y) .令x =0 ,得h(y) =y2 -f(0 )y +h(0 ) ,即h是一个二次函数 .定义f(0 ) =a ,h(0 ) =b ,将h(y) =y2 -ay +b代入 ,有(x -y)f(x) +x2 -ax +b -xy+y2 =y2 -ay +b ,即  (x -y)f(x) +x(x -y) - (x -y)a =0 .由于x、y是任意实数 ,所以 ,f(x) =-x +a .经…  相似文献   

17.
文献[1]~[3]对二次函数f(x)=x2+bx+c的迭代进行了探讨,其中文献[2]、[3]得到了关于方程f2(x)=x在特殊情形下根的一个结论:设f(x)=x2+bx+c,记Δ0=(b-1)2-4c,若方程f(x)=x有2个不等实根,则1)当0<Δ0<4时,f2(x)=x只有2个不等实根;2)当Δ0>4时,f2(x)=x有4个不等实根.方程f2(x)=x中的f2(x)为f2(x)=f(f(x)),一般地有fn(x)=f(fn-1(x)).本文将考虑一般二次函数f(x)=ax2+bx+c(其中a≠0且a,b,c∈R)的迭代,用初等方法给出  相似文献   

18.
一题偶得     
正1.问题的提出已知f(x)=ax~2+bx+c(a≠0),且方程f(x)=x无实数解,下列命题:①方程f[f(x)]=x也一定没有实数解;②若a0,则不等式f[f(x)]x对一切实数x都成立;③若a0,则必存在实数x_0,使f[f(x_0)]x_0;④若a+b+c=0,则不等式f[f(x)]  相似文献   

19.
函数的奇偶性不只给函数的作图和研究函数的其他性质带来方便,而且在解题中还有奇妙的作用。 [例1] 已知:实数x,y满足(3x+y)~5+x~5+4x+y=0。求证:4x+y=0。证明:已知的等式即是(3x+y)~5+3x+y=-(x~5+x), ①设f(x)=x~5+x,则①式化为f(3x+y)=-f(x)。显然,f(x)是奇函数,从而由上式得f(3x+y)=f(-x)。②又f(x)在R上单调上升,且对应法则f是R到R的一一对应,故②式等价于3x+y=-x。∴ 4x+y=0。 [例2] 解方程  相似文献   

20.
函数f(x)=a±bx±c±dx(a,b,c,d>0,定义域非空,下同)的最值可分为以下三类.第一类型如f(x)=a-bx+c-dx,f(x)=a-bx-c+dx的函数在定义域内单调递减;型如f(x)=a+bx+c+dx,y=a+bx-c-dx的函数在定义域内单调递增.故只要求出其定义域,根据单调性就可求出这类函数的最值.(1)f(x)=a-bx+c-dx无最大值,只有最小值,最小值是f[min(ba,cd)],即[f(x)]min=f[min(ab,dc)].(2)f(x)=a-bx-c+dx既有最大值又有最小值,分别为[f(x)]max=f(-dc),[f(x)]min=f(ab).(3)f(x)=a+bx+c+dx在定义域内单调递增,只有最小值,无最大值,最小值是f[max(-ab,-dc)],即[f(x)]min=f[max(…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号