首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
During a dual-center study on obese and normal weight children and adolescents, focusing on glucose metabolism, we observed a marked difference in glucose results (N = 16,840) between the two sites, Salzburg, Austria and Uppsala, Sweden (P < 0.001). After excluding differences in patient characteristics between the two populations as cause of this finding, we investigated other preanalytic influences. Finally, only the tubes used for blood collection at the two sites were left to evaluate. While the Vacuette FC-Mix tube (Greiner Bio-One, Kremsmünster, Austria) was used in Uppsala, in Salzburg blood collections were performed with a lithium heparin tube (LH-Monovette, Sarstedt, Germany). To prove our hypothesis, we collected two blood samples in either of these tubes from 51 children (Salzburg N = 27, Uppsala N = 24) and compared the measured glucose results. Indeed, we found the suspected bias and calculated a correction formula, which significantly diminished the differences of glucose results between the two sites (P = 0.023). Our finding is in line with those of other studies and although this issue should be widely known, we feel that it is widely neglected, especially when comparing glucose concentrations across Europe, using large databases without any information on preanalytic sample handling.  相似文献   

2.

Introduction:

Preanalytical variables account for most of laboratory errors. There is a wide range of factors that affect the reliability of laboratory report. Most convenient sample type for routine laboratory analysis is serum. BD Vacutainer® Rapid Serum Tube (RST) (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) blood collection tube provides rapid clotting time allowing fast serum separation. Our aim was to evaluate the comparability of routine chemistry parameters in BD Vacutainer® RST blood collection tube in reference with the BD Vacutainer® Serum Separating Tubes II Advance Tube (SST) (Becton, Dickinson and Company, Franklin Lakes, NJ, USA).

Materials and methods:

Blood specimens were collected from 90 participants for evaluation on its results, clotting time and stability study of six routine biochemistry parameters: glucose (Glu), aspartate aminotransferase (AST), alanine aminotransferase (ALT), calcium (Ca), lactate dehidrogenase (LD) and potassium (K) measured with Olympus AU2700 analyzer (Beckman Coulter, Tokyo, Japan). The significance of the differences between samples was assessed by paired t-test or Wilcoxon Matched-Pairs Rank test after checking for normality.

Results:

Clotting process was significantly shorter in the RSTs compared to SSTs (2.49 min vs. 19.47 min, respectively; P < 0.001). There was a statistically significant difference between the RST and SST II tubes for glucose, calcium and LD (P < 0.001). Differences for glucose and LD were also clinically significant. Analyte stability studies showed that all analytes were stable for 24 h at 4 °C.

Conclusions:

Most results (except LD and glucose) from RST are comparable with those from SST. In addition, RST tube provides shorter clotting time.  相似文献   

3.

Background:

In vitro hemolysis can be induced by several biological and technical sources, and may be worsened by forced aspiration of blood in vacuum tubes. This study was aimed to compare the probability of hemolysis by drawing blood with a commercial evacuated blood collection tube, and S-Monovette used either in the “vacuum” or “aspiration” mode.

Materials and methods:

The study population consisted in 20 healthy volunteers. A sample was drawn into 4.0 mL BD Vacutainer serum tube from a vein of one upper arm. Two other samples were drawn with a second venipuncture from a vein of the opposite arm, into 4.0 mL S-Monovette serum tubes, by both vacuum an aspiration modes. After separation, serum potassium, lactate dehydrogenase (LD) and hemolysis index (HI) were tested on Beckman Coulter DxC.

Results:

In no case the HI exceed the limit of significant hemolysis. As compared with BD Vacutainer, no significant differences were observed for potassium and LD using S-Monovette with vacuum method. Significant increased values of both parameters were however found in serum collected into BD Vacutainer and S-Monovette by vacuum mode, compared to serum drawn by S-Monovette in aspiration mode. The mean potassium bias was 2.2% versus BD Vacutainer and 2.4% versus S-Monovette in vacuum mode, that of LD was 2.7% versus BD Vacutainer and 2.1% versus S-Monovette in vacuum mode. None of these variations exceeded the allowable total error.

Conclusions:

Although no significant macro-hemolysis was observed with any collection system, the less chance of producing micro-hemolysis by S-Monovette in aspiration mode suggest that this device may be used when a difficult venipuncture combined with the vacuum may increase the probability of spurious hemolysis.  相似文献   

4.
Procedures involving phlebotomy are critical for obtaining diagnostic blood specimens and represent a well known and recognized problem, probably among the most important issues in laboratory medicine. The aim of this report is to show spurious hyperkalemia and hypocalcemia due to inadequate phlebotomy procedure. The diagnostic blood specimens were collected from a male outpatient 45 years old, with no clinical complaints. The tubes drawing order were as follows: i) clot activator and gel separator (serum vacuum tube), ii) K3EDTA, iii) a needleless blood gas dedicated-syringe with 80 I.U. lithium heparin, directly connected to the vacuum tube holder system. The laboratory testing results from serum vacuum tube and dedicated syringe were 4.8 and 8.5 mmol/L for potassium, 2.36 and 1.48 mmol/L for total calcium, respectively. Moreover 0.15 mmol/L of free calcium was observed in dedicated syringe. A new blood collection was performed without K3EDTA tube. Different results were found for potassium (4.7 and 4.5 mmol/L) and total calcium (2.37 and 2.38 mmol/L) from serum vacuum tube and dedicated syringe, respectively. Also free calcium showed different concentration (1.21 mmol/L) in this new sample when compared with the first blood specimen. Based on this case we do not encourage the laboratory managers training the phlebotomists to insert the dedicated syringes in needle-holder system at the end of all vacuum tubes. To avoid double vein puncture the dedicated syringe for free calcium determination should be inserted immediately after serum tubes before EDTA vacuum tubes.  相似文献   

5.

Introduction

The validation process is essential in accredited clinical laboratories. Aim of this study was to validate five kinds of serum vacuum tubes for routine clinical chemistry laboratory testing.

Materials and methods:

Blood specimens from 100 volunteers in five diff erent serum vacuum tubes (Tube I: VACUETTE®, Tube II: LABOR IMPORT®, Tube III: S-Monovette®, Tube IV: SST® and Tube V: SST II®) were collected by a single, expert phlebotomist. The routine clinical chemistry tests were analyzed on cobas® 6000 module. The significance of the diff erences between samples was assessed by paired Student’s t-test after checking for normality. The level of statistical significance was set at P < 0.005. Finally, the biases from Tube I, Tube II, Tube III, Tube IV and Tube V were compared with the current desirable quality specifications for bias (B), derived from biological variation.

Results and conclusions:

Basically, our validation will permit the laboratory or hospital managers to select the brand’s vacuum tubes validated according him/her technical or economical reasons, in order to perform the following laboratory tests: glucose, total cholesterol, high density lipoprotein-cholesterol, triglycerides, total protein, albumin, blood urea nitrogen, uric acid, alkaline phosphatise, aspartate aminotransferase, gamma-glutamyltransferase, lactate dehydrogenase, creatine kinase, total bilirubin, direct bilirubin, calcium, iron, sodium and potassium. On the contrary special attention will be required if the laboratory already performs creatinine, amylase, phosphate and magnesium determinations and the quality laboratory manager intend to change the serum tubes. We suggest that laboratory management should both standardize the procedures and frequently evaluate the quality of in vitro diagnostic devices.  相似文献   

6.
    
Preanalytical phase is the most vulnerable part of the total testing process and is considered to be among the greatest challenges to the laboratory professionals. However, preanalytical activities, management of unsuitable specimens and reporting policies are not fully standardized, nor harmonized worldwide. Several standards related to blood sampling and sample transportation and handling are available, but compliance to those guidelines is low, especially outside the laboratory and if blood sampling is done without the direct supervision of the laboratory staff. Furthermore, for some most critical procedures within the preanalytical phase, internationally accepted guidelines and recommendations as well as related quality measures are unfortunately unavailable. There is large heterogeneity in the criteria for sample rejection, the different strategies by which unacceptable samples are managed, processed and test results reported worldwide. Management of unacceptable specimens warrants therefore immediate harmonization. Alongside the challenging and long road of patient safety, preanalytical phase offers room for improvement, and Editors at Biochemia Medica Journal definitely hope to continue providing a respective mean for reporting studies on different preanalytical phase topics. With pleasure and delight we invite potential future authors to submit their articles examining the quality of various preanalytical activities to Biochemia Medica. We will keep nurturing this topic as our prominent feature and by this we hope to be able to deliver valid evidence for some future guidelines and recommendations.  相似文献   

7.

Introduction:

We hypothesized that patients are poorly informed about proper procedure for 24-hour urine specimen collection and its relevance in determination of biochemical analytes, despite availability of leaflets and webpage with instruction for collection. The aim of this survey was to question outpatients how well are they informed about procedure of 24-hour urine specimen collection.

Materials and methods:

The survey with 10 questions was done in outpatient laboratory of University Department of Chemistry, Medical School University Hospital Sestre Milosrdnice, Zagreb, Croatia. The study included 59 patients with collected 24-hour urine sample who have consented to participate in the survey.

Results:

Out of 59 participants, most of them (0.97) were older than 40 years. Internet was not recognized as a source of information (1/59). Almost one third of the patients have changed their drinking habits to collect more urine volume. Although most of the patients (0.60) were aware that the bottle of water is the best choice for the container, almost half of them were collected urine samples in the plastic soft drink bottle. Laboratory staff and physicians often have given information about proper collection procedure, but that information was insufficient.

Conclusions:

Patients are usually not aware of importance of proper preanalytical procedure for collecting urine specimen and how improper collection could affect results of requested tests. Education of outpatients, general practitioners and laboratory staff is needed in order to improve sample quality and trueness of results.  相似文献   

8.
    
Phlebotomy is one of the most complex medical procedures in the diagnosis, management and treatment of patients in healthcare. Since laboratory test results are the basis for a large proportion (60–80%) of medical decisions, any error in the phlebotomy process could have serious consequences. In order to minimize the possibility of errors, phlebotomy procedures should be standardised, well-documented and written instructions should be available at every workstation. Croatia is one of the few European countries that have national guidelines for phlebotomy, besides the universally used CLSI (Clinical Laboratory Standards Institute) H3-A6 Procedures for the Collection of Diagnostic Blood Specimens by Venipuncture; approved Standard-Sixth Edition (CLSI, 2007) and WHO (World Health Organization) guidelines on drawing blood: best practices in phlebotomy (WHO, 2010). However, the growing body of evidence in importance of preanalytical phase management resulted in a need for evidence based revision and expansion of existing recommendations.The Croatian Society for Medical Biochemistry and Laboratory Medicine, Working Group for the Preanalytical Phase issued this recommendation. This document is based on the CLSI guideline H3-A6, with significant differences and additional information.  相似文献   

9.

Introduction:

The contamination of serum or lithium heparin blood with ethylenediaminetetraacetic acid (EDTA) salts may affect accuracy of some critical analytes and jeopardize patient safety. The aim of this study was to evaluate the effect of lithium heparin sample contamination with different amounts of K2EDTA.

Materials and methods:

Fifteen volunteers were enrolled among the laboratory staff. Two lithium heparin tubes and one K2EDTA tube were collected from each subject. The lithium-heparin tubes of each subject were pooled and divided in 5 aliquots. The whole blood of K2EDTA tube was then added in scalar amount to autologous heparinised aliquots, to obtained different degrees of K2EDTA blood volume contamination (0%; 5%; 13%; 29%; 43%). The following clinical chemistry parameters were then measured in centrifuged aliquots: alanine aminotranspherase (ALT), bilirubin (total), calcium, chloride, creatinine, iron, lactate dehydrogenase (LD), lipase, magnesium, phosphate, potassium, sodium.

Results:

A significant variation starting from 5% K2EDTA contamination was observed for calcium, chloride, iron, LD, magnesium (all decreased) and potassium (increased). The variation of phosphate and sodium (both increased) was significant after 13% and 29% K2EDTA contamination, respectively. The values of ALT, bilirubin, creatinine and lipase remained unchanged up to 43% K2EDTA contamination. When variations were compared with desirable quality specifications, the bias was significant for calcium, chloride, LD, magnesium and potassium (from 5% K2EDTA contamination), sodium, phosphate and iron (from 29% K2EDTA contamination).

Conclusions:

The concentration of calcium, magnesium, potassium, chloride and LD appears to be dramatically biased by even modest K2EDTA contamination (i.e., 5%). The values of iron, phosphate, and sodium are still reliable up to 29% K2EDTA contamination, whereas ALT, bilirubin, creatinine and lipase appear overall less vulnerable towards K2EDTA contamination.  相似文献   

10.
Improper design or use of blood collection devices can adversely affect the accuracy of laboratory test results. Vascular access devices, such as catheters and needles, exert shear forces during blood flow, which creates a predisposition to cell lysis. Components from blood collection tubes, such as stoppers, lubricants, surfactants, and separator gels, can leach into specimens and/or adsorb analytes from a specimen; special tube additives may also alter analyte stability. Because of these interactions with blood specimens, blood collection devices are a potential source of pre-analytical error in laboratory testing. Accurate laboratory testing requires an understanding of the complex interactions between collection devices and blood specimens. Manufacturers, vendors, and clinical laboratorians must consider the pre-analytical challenges in laboratory testing. Although other authors have described the effects of endogenous substances on clinical assay results, the effects/impact of blood collection tube additives and components have not been well systematically described or explained. This review aims to identify and describe blood collection tube additives and their components and the strategies used to minimize their effects on clinical chemistry assays.  相似文献   

11.

Introduction:

Optimal storage of serum specimens in central laboratories for a long period for multicenter reference interval studies, or epidemiologic studies remains to be determined. We aimed to examine the analytical stability of chemistry analytes following numerous freeze-thaw and long term storage.

Materials and methods:

Serum samples were obtained from 15 patients. Following baseline measurement, sera of each subject were aliquoted and stored at −20 °C for two experiments. A group of sera were kept frozen for up to 1, 2 and 3 months and then analyzed for stability. The other experiment consisted of one to ten times of freeze and thaw cycles. Total of 17 chemistry analytes were assayed at each time point. The results were compared with those obtained from the initial analysis of fresh samples. Median or mean changes from baseline (T0) concentrations were evaluated both statistically and clinically according to the desirable bias.

Results:

Of the analytes studied, aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase (CK), gamma-glutamyl transferase (GGT), direct bilirubin, glucose, creatinine, cholesterol, triglycerides, high density lipoprotein (HDL) were stable in all conditions. Blood urea nitrogen (BUN), uric acid, total protein, albumin, total bilirubin, calcium, lactate dehydrogenase (LD) were changed significantly (P < 0.005).

Conclusions:

As a result, common clinical chemistry analytes, with considering the variability of unstable analytes, showed adequote stability after 3 months of storage in sera at −20 °C, or up to ten times of freeze-thaw cycle. All the same, such analysis can only be performed for exceptional cases, and this should be taken into account while planning studies.  相似文献   

12.
    
IntroductionKidney stone formers can have higher oxalate and phosphate salt amounts in their urine than healthy people and we hypothesized that its acidification may be useful. The study aims to compare results of urine concentrations of calcium, magnesium, and inorganic phosphorus in the midstream portion of first voided morning urine samples without (FMU) and with post-collection acidification (FMUa) in kidney stone patients.Materials and methodsThis is a prospective single center study. A total of 138 kidney stone patients with spot urine samples were included in the study. Urine concentrations of calcium, magnesium and inorganic phosphorus were measured with and without post-collection acidification. Acidification was performed by adding 5 µL of 6 mol/L HCl to 1 mL of urine.ResultsThe median age (range) of all participants was 56 (18-87) years. The median paired differences between FMU and FMUa concentrations of calcium, magnesium, and inorganic phosphorus were: - 0.040 mmol/L, 0.035 mmol/L, and 0.060 mmol/L, respectively. They were statistically different: P < 0.001, P < 0.001, P = 0.004, respectively. These differences are not clinically significant because biological variations of these markers are much higher.ConclusionsNo clinically significant differences in urinary calcium, magnesium, and inorganic phosphorus concentrations between FMU and FMUa in patients with kidney stones were found.  相似文献   

13.
Over the past three decades, the goal of many researchers is analysis of exhaled breath condensate (EBC) as noninvasively obtained sample. A total quality in laboratory diagnostic processes in EBC analysis was investigated: pre-analytical (formation, collection, storage of EBC), analytical (sensitivity of applied methods, standardization) and post-analytical (interpretation of results) phases. EBC analysis is still used as a research tool. Limitations referred to pre-analytical, analytical, and post-analytical phases of EBC analysis are numerous, e.g. low concentrations of EBC constituents, single-analyte methods lack in sensitivity, and multi-analyte has not been fully explored, and reference values are not established. When all, pre-analytical, analytical and post-analytical requirements are met, EBC biomarkers as well as biomarker patterns can be selected and EBC analysis can hopefully be used in clinical practice, in both, the diagnosis and in the longitudinal follow-up of patients, resulting in better outcome of disease.  相似文献   

14.
In the 70ies of the last century, ther term “preanalytical phase” was introduced in the literature. This term describes all actions and aspects of the “brain to brain circle” of the medical laboratory diagnostic procedure happening before the analytical phase. The author describes his personal experiences in the early seventies and the following history of increasing awareness of this phase as the main cause of “laboratory errors”. This includes the definitions of influence and interference factors as well as the first publications in book, internet, CD-Rom and recent App form over the past 40 years. In addition, a short summary of previous developments as prerequesits of laboratory diagnostic actions is described from the middle age matula for urine collection to the blood collection tubes, anticoagulants and centrifuges. The short review gives a personal view on the possible causes of missing awareness of preanalytical causes of error and future aspects of new techniques in regulation of requests to introduction of quality assurance programs for preanalytical factors.  相似文献   

15.

Introduction:

Studies about vitamin D [25(OH)D] stability in plasma are limited and preanalytical variables such as tube type may affect results. We aimed to evaluate effect of storage conditions, sample type and some preanalytical variables on vitamin D concentration.

Materials and methods:

Blood samples from 15 healthy subjects were centrifuged at different temperatures and stored under different conditions. Serum and plasma 25(OH)D difference, effect of centrifugation temperature and common storage conditions were investigated.

Results:

There was no difference between serum and plasma vitamin D concentration. Centrifugation temperature had no impact on vitamin D concentration. 25(OH)D is stable under common storage conditions: 4 hours at room temperature, 24 hours at 2–8 °C, 7 days at −20 °C, 3 months at −80 °C.

Conclusion:

Vitamin D does not require any special storage conditions and refrigeration. Both serum and plasma can be used for measurement.  相似文献   

16.

Introduction:

The phlebotomists’ procedures are a still source of laboratory variability. The aim of this study was to verify the efficacy of minor modification in procedure for collection of diagnostic blood specimens by venipuncture from CLSI H03-A6 document is able to reduce the tourniquet application time.

Materials and methods:

Thirty phlebotomists were invited to participate. Each phlebotomist was trained individually to perform the new venipuncture procedure that shortens the time of tourniquet release and removal. The phlebotomy training program was delivered over 8h. After training, all phlebotomists were monitored for 20 working days, to guarantee the adoption of the correct new procedures for collection of diagnostic blood specimens. After this time frame the phlebotomists were evaluated to verify whether the new procedure for blood collection derived from CLSI H03-A6 document was effective to improve the quality process by decrease in tourniquet application time. We compared the tourniquet application time and qualitative difference of phlebotomy procedures between laboratories before and after phlebotomy training.

Results:

The overall mean ± SD tourniquet application time before and after this intervention were 118 ± 1 s and 30 ± 1 s respectively. Minor modifications in procedure for blood collection were able to reduce significantly the tourniquet application time (−88 s, P < 0.001).

Conclusions:

The minor modifications in procedure for collection of diagnostic blood specimens by venipuncture from CLSI H03-A6 document were able to reduce the tourniquet application time. Now the proposed new procedure for collection of diagnostic blood specimens by venipuncture could be considered usefulness and should be put into practice by all quality laboratory managers and/or phlebotomy coordinators to avoid preanalytical errors regard venous stasis and guarantee patient safety.  相似文献   

17.
    
IntroductionThe aim of the study was to determine the current state of laboratory’s extra-analytical phase performance by calculating preanalytical and postanalytical phase quality indicators (QIs) and sigma values and to compare obtained data according to desired quality specifications and sigma values reported by The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Working Group – Laboratory errors and Patient Safety.Materials and methodsPreanalytical and postanalytical phase data were obtained through laboratory information system. Rejected samples in preanalytical phase were grouped according to reasons for rejection and frequencies were calculated both monthly and for 2019. Sigma values were calculated according to “short term sigma” table.ResultsThe number of rejected samples in laboratory was 643 out of 191,831 in 2019. Total preanalytical phase rejection frequency was 0.22%. According to the reasons for rejection, QIs and sigma values were: “Samples with excessive transportation time”: 0.0036 and 5.47; “Samples collected in wrong container” 0.02 and 5.11. In December, QIs and sigma values were: “Samples with excessive transportation time”: 0.01 and 5.34; “Samples collected in wrong container”: 0.03 and 4.98. The postanalytical QIs and sigma values were: “Reports delivered outside the specified time”: 0.34 and 4.21; “Turn around time of potassium”: 56 minute and 3.84, respectively. There were no errors in “Critical values of inpatients and outpatients notified after a consensually agreed time”.ConclusionsExtra-analytical phase was evaluated by comparing it with the latest quality specifications and sigma values which will contribute to improving the quality of laboratory medicine.  相似文献   

18.

Background

The preanalytical phase represents the major source of variability in laboratory diagnostics. Our aim was to assess to what extent underfilling of primary blood tubes may impact upon routine coagulation testing.

Materials and methods:

Blood was drawn by syringe from 21 healthy volunteers and 6 patients on warfarin therapy, and immediately transferred into 3.6 mL vacuum tubes containing 3.2% sodium citrate (Terumo Europe N.V., Leuven, Belgium). All tubes were filled using standardized volumes of whole blood to produce scalar amounts of filling: 3.6 mL (i.e., 100%), 3.2 mL (89%), 2.8 mL (78%) and 2.4 mL (67%). Samples were mixed and centrifuged at 1300 × g for 10 min. The plasma was tested for prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrinogen (FBG) on ACL TOP (Instrumentation Laboratory - IL, Milan, Italy), using IL reagents. A polynomial plot was derived for each parameter from interpolation of clotting values obtained with different percentages of filling, and these plots were compared with quality specifications (± 2.0 for PT, ± 2.3 for APTT and ± 4.8 for FBG) to calculate the minimal filling volume required to produce clinically acceptable results.

Results:

The equations were (PF, Percentage of filling): PT (sec) = 3.375 × PF^2–6.255 × PF + 17.806 (r = 0.980); APTT (sec) = 8.925 × PF^2–23.578 × PF + 46.356 (r = 0.979); and FBG (mg/dL) = −311.5 × PF^2 + 422.1 × PF + 147.07 (r = 0.994). According to these equations, the minimum allowed thresholds of blood tubes filling were > 61% for PT, > 87% for APTT and > 71% for FBG.

Conclusions:

Our results confirm that routine coagulation testing performed on underfilled tubes may generate biased and clinically misleading test results. This is particularly critical for APTT, wherein tubes filled at less than ∼90% generate unreliable data. The FBG and the PT seem more resistant to underfilling, clinical significant biases being observed only where blood tubes were filled at less than ∼60 and ∼70%, respectively.  相似文献   

19.
    
In the clinical laboratory setting, interferences can be a significant source of laboratory errors with potential to cause serious harm for the patient. After hemolysis, lipemia is the most frequent endogenous interference that can influence results of various laboratory methods by several mechanisms. The most common preanalytical cause of lipemic samples is inadequate time of blood sampling after the meal or parenteral administration of synthetic lipid emulsions. Although the best way of detecting the degree of lipemia is measuring lipemic index on analytical platforms, laboratory experts should be aware of its problems, like false positive results and lack of standardization between manufacturers. Unlike for other interferences, lipemia can be removed and measurement can be done in a clear sample. However, a protocol for removing lipids from the sample has to be chosen carefully, since it is dependent on the analytes that have to be determined. Investigation of lipemia interference is an obligation of manufacturers of laboratory reagents; however, several literature findings report lack of verification of the declared data. Moreover, the acceptance criteria currently used by the most manufacturers are not based on biological variation and need to be revised. Written procedures for detection of lipemia, removing lipemia interference and reporting results from lipemic samples should be available to laboratory staff in order to standardize the procedure, reduce errors and increase patient safety.  相似文献   

20.
    
IntroductionThe COVID-19 pandemic has posed several challenges to clinical laboratories across the globe. Amidst the outbreak, errors occurring in the preanalytical phase of sample collection, transport and processing, can further lead to undesirable clinical consequences. Thus, this study was designed with the following objectives: (i) to determine and compare the blood specimen rejection rate of a clinical laboratory and (ii) to characterise and compare the types of preanalytical errors between the pre-pandemic and the pandemic phases.Materials and methodsThis retrospective study was carried out in a trauma-care hospital, presently converted to COVID-19 care centre. Data was collected from (i) pre-pandemic phase: 1st October 2019 to 23rd March 2020 and (ii) pandemic phase: 24th March to 31st October 2020. Blood specimen rejection rate was calculated as the proportion of blood collection tubes with preanalytical errors out of the total number received, expressed as percentage.ResultsTotal of 107,716 blood specimens were screened of which 43,396 (40.3%) were received during the pandemic. The blood specimen rejection rate during the pandemic was significantly higher than the pre-pandemic phase (3.0% versus 1.1%; P < 0.001). Clotted samples were the commonest source of preanalytical errors in both phases. There was a significant increase in the improperly labelled samples (P < 0.001) and samples with insufficient volume (P < 0.001), whereas, a significant decline in samples with inadequate sample-anticoagulant ratio and haemolysed samples (P < 0.001).ConclusionIn the ongoing pandemic, preanalytical errors and resultant blood specimen rejection rate in the clinical laboratory have significantly increased due to changed logistics. The study highlights the need for corrective steps at various levels to reduce preanalytical errors in order to optimise patient care and resource utilisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号