首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optimal tracking problem for single-input–single-output (SISO) networked control system over a communication channel with packet dropouts is studied in this paper. The tracking performance is measured by the energy of the error signal between the output of the plant and the reference signal. It is shown that the optimal tracking performance is constrained by nonminimum phase zeros, unstable poles, the characteristics of the reference signal and packet dropout probability, and the optimal controller is obtained. It is also shown that when the communication constraint does not exist, the optimal tracking performance reduces to the existing normal tracking performance of the control system without a communication channel. The result shows how the packet dropouts probability of a communication channel may fundamentally constrain a control system's tracking ability. Some typical examples and simulations are given to illustrate the theoretical results.  相似文献   

2.
In this paper, a novel tracking control scheme for continuous-time nonlinear affine systems with actuator faults is proposed by using a policy iteration (PI) based adaptive control algorithm. According to the controlled system and desired reference trajectory, a novel augmented tracking system is constructed and the tracking control problem is converted to the stabilizing issue of the corresponding error dynamic system. PI algorithm, generally used in optimal control and intelligence technique fields, is an important reinforcement learning method to solve the performance function by critic neural network (NN) approximation, which satisfies the Lyapunov equation. For the augmented tracking error system with actuator faults, an online PI based fault-tolerant control law is proposed, where a new tuning law of the adaptive parameter is designed to tolerate four common kinds of actuator faults. The stability of the tracking error dynamic with actuator faults is guaranteed by using Lyapunov theory, and the tracking errors satisfy uniformly bounded as the adaptive parameters get converged. Finally, the designed fault-tolerant feedback control algorithm for nonlinear tracking system with actuator faults is applied in two cases to track the desired reference trajectory, and the simulation results demonstrate the effectiveness and applicability of the proposed method.  相似文献   

3.
This paper is concerned with the event-triggered dynamic output feedback tracking control for large-scale interconnected systems with disturbances. For each node, a novel event-triggered mechanism is driven by local relative output tracking error to determine whether the signal will be transmitted. A two-step optimization is applied for dynamic output feedback controller design which guarantees robust stability of the system with an optimal H disturbance attenuation level. Finally, a simulation example of master-slave multiple vehicles is given to illustrate the effectiveness of the proposed scheme.  相似文献   

4.
In practice, many controlled plants are equipped with MIMO non-affine nonlinear systems. The existing methods for tracking control of time-varying nonlinear systems mostly target the systems with special structures or focus only on the control based on neural networks which are unsuitable for real-time control due to their computation complexity. It is thus necessary to find a new approach to real-time tracking control of time-varying nonlinear systems. In this paper, a control scheme based on multi-dimensional Taylor network (MTN) is proposed to achieve the real-time output feedback tracking control of multi-input multi-output (MIMO) non-affine nonlinear time-varying discrete systems relative to the given reference signals with online training. A set of ideal output signals are selected by the given reference signals, the optimal control laws of the system relative to the selected ideal output signals are set by the minimum principle, and the corresponding optimal outputs are taken as the desired output signals. Then, the MTN controller (MTNC) is generated automatically to fit the optimal control laws, and the conjugate gradient (CG) method is employed to train the network parameters offline to obtain the initial parameters of MTNC for online learning. Addressing the time-varying characteristics of the system, the back-propagation (BP) algorithm is implemented to adjust the weight parameters of MTNC for its desired real-time output tracking control by the given reference signals, and the sufficient condition for the stability of the system is identified. Simulation results show that the proposed control scheme is effective and the actual output of the system tracks the given reference signals satisfactorily.  相似文献   

5.
In classical model reference adaptive control (MRAC), the adaptive rates must be tuned to meet multiple competing objectives. Large adaptive rates guarantee rapid convergence of the trajectory tracking error to zero. However, large adaptive rates may also induce saturation of the actuators and excessive overshoots of the closed-loop system’s trajectory tracking error. Conversely, low adaptive rates may produce unsatisfactory trajectory tracking performances. To overcome these limitations, in the classical MRAC framework, the adaptive rates must be tuned through an iterative process. Alternative approaches require to modify the plant’s reference model or the reference command input. This paper presents the first MRAC laws for nonlinear dynamical systems affected by matched and parametric uncertainties that constrain both the closed-loop system’s trajectory tracking error and the control input at all times within user-defined bounds, and enforce a user-defined rate of convergence on the trajectory tracking error. By applying the proposed MRAC laws, the adaptive rates can be set arbitrarily large and both the plant’s reference model and the reference command input can be chosen arbitrarily. The user-defined rate of convergence of the closed-loop plant’s trajectory is enforced by introducing a user-defined auxiliary reference model, which converges to the trajectory tracking error obtained by applying the classical MRAC laws before its transient dynamics has decayed, and steering the trajectory tracking error to the auxiliary reference model at a rate of convergence that is higher than the rate of convergence of the plant’s reference model. The ability of the proposed MRAC laws to prescribe the performance of the closed-loop system’s trajectory tracking error and control input is guaranteed by barrier Lyapunov functions. Numerical simulations illustrate both the applicability of our theoretical results and their effectiveness compared to other techniques such as prescribed performance control, which allows to constrain both the rate of convergence and the maximum overshoot on the trajectory tracking error of uncertain systems.  相似文献   

6.
A homing mechanism is required for repositioning as a system performs tasks repeatedly. By examining the effect of poor repositioning on the tracking performance of iterative learning control, this paper develops a varying-order learning approach for the performance improvement. Through varying-order learning, the resultant system output trajectory is ensured to follow a given trajectory with a lowered error bound, in comparison with the conventional fixed-order method. A discrete-time initial rectifying action is introduced in the formed varying-order learning algorithm, and a sufficient condition for convergence is derived. An implementable scheme is presented based on the proposed approach, and illustrated by numerical results of two examples of robotic manipulators.  相似文献   

7.
8.
A novel offset-free trajectory tracking control strategy is proposed for a hypersonic vehicle under external disturbances and parameter uncertainties. In order to realize the real-time control for the hypersonic vehicle, the predictive control law is divided into the on-line design and off-line design. Unlike general nonlinear disturbance observer-based control which involves designing the disturbance compensation strategy, the influences of the disturbances on the velocity and altitude are attenuated by the direct feedback compensation (DFC). Particularly, the offset-free tracking feature is proved for the output reference signal. Simulations show that the real-time control can be realized for the hypersonic vehicle, the controls and angle of attack are all in their given constraint scopes, and the velocity and altitude can track the given references accurately even under mismatched disturbances.  相似文献   

9.
This paper investigates the robust output regulation problem for stochastic systems with additive noises. As is known, for the output regulation control problem, a general method is to regard that the system is disturbed by an autonomous exosystem (which is consisted by external disturbances and reference signals), and for the system disturbed by the white noise, the stochastic differential equations (SDEs) should be utilized in modeling, accordingly, a controller with a feedforward regulator is constructed for the stochastic system with an exosystem, which can not only cancel the external disturbance, but also transform the trajectory tracking problem into the stabilization problem; In consideration of the state variables in stochastic systems cannot be measured completely, we embed an observer to the controller, such that the random interference can be suppressed, and the trajectory tracking can be achieved. Based on the stochastic control theory, the criteria of the exponential practical stability in the mean square is presented for the closed-loop system, finally, through tuning the controller parameters, the mean square of the tracking error can converge to an arbitrarily small neighborhood of the origin.  相似文献   

10.
This paper is concerned with an event-triggered sliding mode control (SMC) scheme for trajectory tracking in autonomous surface vehicles (ASVs). First, an event-triggered variable that consists of tracking error, desired trajectory and exogenous input of the reference system is introduced to decrease the magnitude of the robust SMC term. Then, the reaching conditions of the designed event-triggered sliding mode are established. Moreover, the event-triggered induced errors that exist in the rotation matrix of the ASV are analyzed. In the presence of parameter uncertainties and external disturbances, the proposed event-triggered SMC scheme can ensure the control accuracy and low-frequency actuator updates. Then both actuator wear and energy consumption of the actuators can be reduced comparing with the traditional time-triggered controller. The proposed controller not only guarantees uniform ultimate boundedness of the tracking error but also ensures non-accumulation of inter-execution times. The results are illustrated through simulation examples.  相似文献   

11.
This paper is devoted to the fault-tolerant tracking control for a class of uncertain robotic systems under time-varying output constraints. Notably, both actuator fault and the disturbances are present while all the dynamic matrices are not necessarily to be parameterized by unknown parameters or have known nominal parts, and moreover, the reference trajectories as well as the output constraints functions are not necessarily twice continuously differentiable without any time derivatives of them being available for feedback. These remarkable characteristics greatly relax the corresponding assumptions of the related literature and in turn to bring the ineffectiveness of the traditional schemes on this topic. For this, a powerful adaptive control methodology is established by incorporating adaptive dynamic compensation technique into the backstepping framework based on Barrier Lyapunov functions. Then, an adaptive state feedback controller with the smart choices of adaptive law and virtual controls is designed which guarantees that all the states of the closed-loop system are bounded and the system output practically tracks the reference trajectory while not violates the output constraints.  相似文献   

12.
The present paper deals with an optimal boundary control problem in which the process of systems under consideration is governed by a linear parabolic partial differential equation over an infinite time interval. The objective of the paper is to determine the optimal boundary control that minimize a given energy-based performance measure. The performance measure is specified as a quadratic functional of displacement and a suitable penalty term involving the boundary controls. In order to determine the optimal boundary controls, the problem with boundary controls are converted into a problem with distributed controls. The modal space technique is then used to reduce the system into the optimal control of time invariant lumped parameter system. The associated system of uncoupled first order initial value problems is solved in terms of controllers. Next step deals with the computation of the control and trajectory of the linear time-invariant lumped parameter. For this we approximate the controllers by a finite number of orthogonal exponential zero-interpolants over the interval [0,∞). The resultant performance index after using the optimality condition leads to a system of linear algebraic equations. The suggested technique is easy to implement on digital computer. We provide a numerical example to demonstrate the applicability and efficiency of the proposed approach.  相似文献   

13.
The purpose of fault diagnosis of stochastic distribution control (SDC) systems is to use the measured input and the system output probability density functions (PDFs) to obtain the fault information of the SDC system. When the target PDF is known, the purpose of fault tolerant control of stochastic distribution control system is to make the output PDF still track the given distribution using the fault tolerant controller. However, in practice, time delay may exist in the data (or image) processing, the modeling and transmission phases. When time delay is not considered, the effectiveness of the fault detection, diagnosis and fault tolerant control of stochastic distribution systems will be reduced. In this paper, the rational square-root B-spline is used to approach the output probability density function. In order to diagnose the fault in the dynamic part of such systems, it is then followed by the novel design of a nonlinear neural network observer-based fault diagnosis algorithm. The time delay term will be deleted in the stability proof of the observation error dynamic system. Based on the fault diagnosis information, a new fault tolerant controller based on PI tracking control is designed to make the post-fault probability density function still track the given distribution, which is dependent of the time delay term. Finally, simulations for the particle distribution control problem are given to show the effectiveness of the proposed approach.  相似文献   

14.
In this paper, the data-driven adaptive dynamic programming (ADP) algorithm is proposed to deal with the optimal tracking problem for the general discrete-time (DT) systems with delays for the first time. The model-free ADP algorithm is presented by using only the system’s input, output and the reference trajectory of the finite steps of historical data. First, the augmented state equation is constructed based on the time-delay system and the reference system. Second, a novel data-driven state equation is derived by virtue of the history data composed of input, output and reference trajectory, which is considered as a state estimator.Then, a novel data-driven Bellman equation for the linear quadratic tracking (LQT) problem with delays is deduced. Finally, the data-driven ADP algorithm is designed to solve the LQT problem with delays and does not require any system dynamics. The simulation result demonstrates the validity of the proposed data-driven ADP algorithm in this paper for the LQT problem with delays.  相似文献   

15.
This work is dedicated to solving the adaptive fuzzy decentralized tracking control issue of large-scale nonlinear systems with full-state constraints. Different with barrier Lyapunov function, the main difference is that a novel nonlinear state-dependent function (NSDF) is introduced to prevent the state constraints being overstepped. Based on NSDF, the necessary feasibility conditions for virtual controllers are completely removed. Then, the prior knowledge of the unknown virtual control coefficients is no longer required since the original system is transformed via the new affine variable. Under the control strategy, three objectives on system performance are achieved: (a) all signals of the closed-loop system are bounded; (b) the subsystem output closely tracks the reference trajectory and original error is ultimately uniformly bounded; (c) the full-state constraints are not violated for all the time. At the end, two simulation examples are shown to verify the effectiveness of the control method.  相似文献   

16.
The purpose of designing a controller for a teleoperation system is achieving stability and optimal operation in the presence of factors such as time delay, system disturbance and modeling errors. In this article three new schemes for teleoperation systems are suggested using an optimal control to reduce the error of tracking between the master and slave systems. In the first scheme optimal controller has been designed in both the master and slave subsystems and by a suitable combination of the output signals of both controllers and exerting it to the slave, it has tried to create the best performance with regard to tracking. In the second scheme, as in the first one, optimal controller is applied to both the master and slave systems and the output of each controller is then applied to its own system, and by changing the system parameters and weighting factors, it has tried to reduce the tracking error between the master and the slave subsystems. In the third structure optimal control is applied to the master. In all three structures the positions of master-slave are compared together and controlling signals are applied to the master or slave so that they can track each other in the least possible time. In all schemes the effectiveness of the system is shown through the simulations and they are compared with each other.  相似文献   

17.
This paper investigates an adaptive prescribed performance control strategy with specific time planning for trajectory tracking of robotic manipulator subject to input constraint and external disturbances. By constructing an accumulated error vector embedded with a performance enhancement function and introducing an input auxiliary function, a specified-time control framework with built-in prescribed performance is further designed to ensure that the trajectory tracking performance. More particularly, the proposed control law is compatible with the control input saturation suppression algorithm, which is capable of improving the robustness of closed loop system. Under the framework of the proposed control strategy, it is proved by theory that all the signals in the closed-loop system are bounded, and moreover the tracking error can reach the exact convergence domain in a given time. At last, a numerical example is presented to indicate the feasibility and effectiveness of the proposed method.  相似文献   

18.
This paper is concerned with the probability-constrained tracking control problem for a class of time-varying systems with stochastic nonlinearities, stochastic noises and successively packet loss. The main purpose of this paper is to design a time-varying observer and tracking controller such that (1) the probabilities of both the estimation error and tracking error confined to given ellipsoidal sets are larger than prescribed constants, and (2) the ellipsoids are minimized in the sense of matrix norm at each time point. By using a stochastic analysis method, the probability constrained tracking control problem is solved and sufficient conditions are obtained in terms of recursive linear matrix inequalities. A recursive optimization algorithm is developed to design the observer and tracking controller such that not only the addressed probability constrained aim is satisfied, but also the ellipsoidal sets are minimized. At last, a simulation example is given to illustrate the effectiveness and applicability of the developed approach.  相似文献   

19.
Practical time-varying output formation tracking problems with collision avoidance, obstacle dodging and connectivity maintenance for high-order multi-agent systems are investigated, and the practical time-varying output formation tracking error is controlled within an arbitrarily small bound. The outputs of followers are designed to track the output of the leader with unknown control input while retaining the predefined time-varying formation. Uncertainties are considered in the dynamics of the followers and the leader. Firstly, distributed extended state observers are developed to estimate the uncertainties and the leader’s unknown control input. A strategy of obstacle dodging is given by designing an ideal secure position for the followers which are in the threatened area of the obstacles. By constructing collision avoidance, obstacle dodging and connectivity maintenance artificial potential functions, corresponding negative gradient terms are calculated to achieve the safety guarantee. Secondly, a practical time-varying output formation tracking protocol is proposed by using distributed extended state observers and the negative gradient terms. Additionally, an approach is presented to determine the gain parameters in the protocol. The stability of the closed-loop multi-agent system with the protocol is analyzed by using Lyapunov stability theory. Finally, a simulation experiment is provided to illustrate the effectiveness of the obtained methods.  相似文献   

20.
The main results of this paper are concentrated on the nonlinear model predictive control (MPC) tracking optimization based on high-order fully actuated (HOFA) system approaches. The proposed HOFA MPC strategy makes full use of full-actuation property to eliminate the nonlinear dynamics of the system, and then the nonlinear optimization problem is equivalently transformed into a series of easy-solve linear convex optimization problems. Different from general nonlinear MPC methods and the current optimal control of the HOFA system approach, an analytical controller with smooth and less energy is obtained by the moving horizon optimization. And it is proven that the proposed controller can stabilize the corresponding tracking error closed-loop system. Finally, not limited to FA systems, as examples, a nonlinear numerical under-actuated model in the mathematical sense and a benchmark nonlinear under-actuated mechanical system are transformed into corresponding equivalent HOFA systems, the simulation results are given to verify the effectiveness of the proposed strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号