首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Designing new cathodes with high capacity and moderate potential is the key to breaking the energy density ceiling imposed by current intercalation chemistry on rechargeable batteries. The carbonaceous materials provide high capacities but their low potentials limit their application to anodes. Here, we show that Fermi level tuning by p-type doping can be an effective way of dramatically raising electrode potential. We demonstrate that Li(Na)BCF2/Li(Na)B2C2F2 exhibit such change in Fermi level, enabling them to accommodate Li+(Na+) with capacities of 290–400 (250–320) mAh g−1 at potentials of 3.4–3.7 (2.7–2.9) V, delivering ultrahigh energy densities of 1000–1500 Wh kg−1. This work presents a new strategy in tuning electrode potential through electronic band structure engineering.  相似文献   

2.
Active crystal facets can generate special properties for various applications. Herein, we report a (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture with unprecedented and highly stable lithium storage performance. Density functional theory calculations show that the (001) faceted TiO2 nanosheets enable enhanced reaction kinetics by reinforcing their contact with the electrolyte and shortening the path length of Li+ diffusion and insertion-extraction. The reduced graphene oxide (rGO) nanosheets in this TiO2/rGO hybrid largely improve charge transport, while the porous hierarchy at different length scales favors continuous electrolyte permeation and accommodates volume change. This hierarchically porous TiO2/rGO hybrid anode material demonstrates an excellent reversible capacity of 250 mAh g–1 at 1 C (1 C = 335 mA g–1) at a voltage window of 1.0–3.0 V. Even after 1000 cycles at 5 C and 500 cycles at 10 C, the anode retains exceptional and stable capacities of 176 and 160 mAh g–1, respectively. Moreover, the formed Li2Ti2O4 nanodots facilitate reversed Li+ insertion-extraction during the cycling process. The above results indicate the best performance of TiO2-based materials as anodes for lithium-ion batteries reported in the literature.  相似文献   

3.
We report on low-cost fabrication and high-energy density of full-cell lithium-ion battery (LIB) models. Super-hierarchical electrode architectures of Li2SiO3/TiO2@nano-carbon anode (LSO.TO@nano-C) and high-voltage olivine LiMnPO4@nano-carbon cathode (LMPO@nano-C) are designed for half- and full-system LIB-CR2032 coin cell models. On the basis of primary architecture-power-driven LIB geometrics, the structure keys including three-dimensional (3D) modeling superhierarchy, multiscale micro/nano architectures and anisotropic surface heterogeneity affect the buildup design of anode/cathode LIB electrodes. Such hierarchical electrode surface topologies enable continuous in-/out-flow rates and fast transport pathways of Li+-ions during charge/discharge cycles. The stacked layer configurations of pouch LIB-types lead to excellent charge/discharge rate, and energy density of 237.6 Wh kg−1. As the most promising LIB-configurations, the high specific energy density of hierarchical pouch battery systems may improve energy storage for long-driving range of electric vehicles. Indeed, the anisotropic alignments of hierarchical electrode architectures in the large-scale LIBs provide proof of excellent capacity storage and outstanding durability and cyclability. The full-system LIB-CR2032 coin cell models maintain high specific capacity of ∼89.8% within a long-term life period of 2000 cycles, and average Coulombic efficiency of 99.8% at 1C rate for future configuration of LIB manufacturing and commercialization challenges.  相似文献   

4.
Lithium titanium oxide (Li4Ti5O12, LTO), a ‘zero-strain’ anode material for lithium-ion batteries, exhibits excellent cycling performance. However, its poor conductivity highly limits its applications. Here, the structural stability and conductivity of LTO were studied using in situ high-pressure measurements and first-principles calculations. LTO underwent a pressure-induced amorphization (PIA) at 26.9 GPa. The impedance spectroscopy revealed that the conductivity of LTO improved significantly after amorphization and that the conductivity of decompressed amorphous LTO increased by an order of magnitude compared with its starting phase. Furthermore, our calculations demonstrated that the different compressibility of the LiO6 and TiO6 octahedra in the structure was crucial for the PIA. The amorphous phase promotes Li+ diffusion and enhances its ionic conductivity by providing defects for ion migration. Our results not only provide an insight into the pressure depended structural properties of a spinel-like material, but also facilitate exploration of the interplay between PIA and conductivity.  相似文献   

5.
Lithium metal is one of the most promising anode materials for high-energy-density Li batteries. However, low stability caused by dendrite growth and volume change during cycling hinders its practical application. Herein, we report an ingenious design of bio-inspired low-tortuosity carbon with tunable vertical micro-channels to be used as a host to incorporate nanosized Sn/Ni alloy nucleation sites, which can guide Li metal''s plating/stripping and meanwhile accommodate the volume change. The pore sizes of the vertical channels of the carbon host can be regulated to investigate the structure–performance correlation. After compositing Li, the bio-inspired carbon host with the smallest pore size (∼14 μm) of vertical channels exhibits the lowest overpotential (∼18 mV at 1 mA cm−2), most stable tripping/plating voltage profiles, and best cycling stability (up to 500 cycles) in symmetrical cells. Notably, the carbon/Li composite anode is more rewarding than Li foil when coupled with LiFePO4 in full cells, exhibiting a much lower polarization effect, better rate capability and higher capacity retention (90.6% after 120 cycles). This novel bio-inspired design of a low-tortuosity carbon host with nanoalloy coatings may open a new avenue for fabricating advanced Li-metal batteries with high performance.  相似文献   

6.
The rapid development of printed and microscale electronics imminently requires compatible micro-batteries (MBs) with high performance, applicable scalability, and exceptional safety, but faces great challenges from the ever-reported stacked geometry. Herein the first printed planar prototype of aqueous-based, high-safety Zn//MnO2 MBs, with outstanding performance, aesthetic diversity, flexibility and modularization, is demonstrated, based on interdigital patterns of Zn ink as anode and MnO2 ink as cathode, with high-conducting graphene ink as a metal-free current collector, fabricated by an industrially scalable screen-printing technique. The planar separator-free Zn//MnO2 MBs, tested in neutral aqueous electrolyte, deliver a high volumetric capacity of 19.3 mAh/cm3 (corresponding to 393 mAh/g) at 7.5 mA/cm3, and notable volumetric energy density of 17.3 mWh/cm3, outperforming lithium thin-film batteries (≤10 mWh/cm3). Furthermore, our Zn//MnO2 MBs present long-term cyclability having a high capacity retention of 83.9% after 1300 cycles at 5 C, which is superior to stacked Zn//MnO2 batteries previously reported. Also, Zn//MnO2 planar MBs exhibit exceptional flexibility without observable capacity decay under serious deformation, and remarkably serial and parallel integration of constructing bipolar cells with high voltage and capacity output. Therefore, low-cost, environmentally benign Zn//MnO2 MBs with in-plane geometry possess huge potential as high-energy, safe, scalable and flexible microscale power sources for direction integration with printed electronics.  相似文献   

7.
The shuttle effect and excessive volume change of the sulfur cathode severely impede the industrial implementation of Li–S batteries. It is still highly challenging to find an efficient way to suppress the shuttle effect and volume expansion. Here, we report, for the first time, an innovative atomic orbital hybridization concept to construct the hierarchical hollow sandwiched sulfur nanospheres with double-polyaniline layers as the cathode material for large-scale high-performance Li–S batteries. This hierarchically 3D, cross-linked and stable sulfur–polyaniline backbone with interconnected disulfide bonds provides a new type and strong intrinsic chemical confinement of sulfur owing to the atomic orbital hybridization of Li 2s, S 3p, C 2p and N 2p. Crucially, such atomic orbital hybridization of sulfur sandwiched in the double sulfur–polyaniline network is highly reversible during the discharge/charge process and can very efficiently suppress the shuttle effect and volume expansion, contributing to a very high capacity of 1142 mAh g–1 and an excellent stabilized capacity of 886 mAh g–1 at 0.2 C after 500 cycles with a suppressed volume expansion and an unprecedented electrode integrity. This innovative atomic orbital hybridization concept can be extended to the preparation of other electrode materials to eliminate the shuttle effect and volume expansion in battery technologies. The present work also provides a commercially viable and up-scalable cathode material based on this strong and highly reversible atomic orbital hybridation for large-scale high-performance Li–S batteries.  相似文献   

8.
Hydrogel optical light-guides have received substantial interest for applications such as deep-tissue biosensors, optogenetic stimulation and photomedicine due to their biocompatibility, (micro)structure control and tissue-like Young''s modulus. However, despite recent developments, large-scale fabrication with a continuous synthetic methodology, which could produce core-sheath hydrogel fibers with the desired optical and mechanical properties suitable for deep-tissue applications, has yet to be achieved. In this study, we report a versatile concept of integrated light-triggered dynamic wet spinning capable of continuously producing core-sheath hydrogel optical fibers with tunable fiber diameters, and mechanical and optical propagation properties. Furthermore, this concept also exhibited versatility for various kinds of core-sheath functional fibers. The wet spinning synthetic procedure and fabrication process were optimized with the rational design of the core/sheath material interface compatibility [core = poly(ethylene glycol diacrylate-co-acrylamide); sheath = Ca-alginate], optical transparency, refractive index and spinning solution viscosity. The resulting hydrogel optical fibers exhibited desirable low optical attenuation (0.18 ± 0.01 dB cm−1 with 650 nm laser light), excellent biocompatibility and tissue-like Young''s modulus (<2.60 MPa). The optical waveguide hydrogel fibers were successfully employed for deep-tissue cancer therapy and brain optogenetic stimulation, confirming that they could serve as an efficient versatile tool for diverse deep-tissue therapy and brain optogenetic applications.  相似文献   

9.
3-Ethyl-5-trifluoromethyl-1,2,4-triazole is synthesized by a one-pot reaction. Using this asymmetric triazole ligand bearing one trifluoromethyl and one ethyl as side groups, we construct two new porous coordination polymers, MAF-9 and MAF-2F, being isostructural with the classic hydrophobic and flexible materials, FMOF-1 and MAF-2, based on symmetric triazole ligands bearing two trifluoromethyl groups or two ethyl groups, respectively. MAF-9 and MAF-2F can adsorb large amounts of organic solvents but completely exclude water, showing superhydrophobicity with water contact angles of 152o in between those of FMOF-1 and MAF-2. MAF-9 exhibits very large N2-induced breathing and colossal positive and negative thermal expansions like FMOF-1, but the lower molecular weight and smaller volume of MAF-9 give 16% and 4% higher gravimetric and volumetric N2 uptakes, respectively. In contrast, MAF-2F is quite rigid and does not show the inversed temperature-dependent N2 adsorption and large guest-induced expansion like MAF-2. Further, despite the higher molecular weight and larger volume, MAF-2F possesses 6% and 25% higher gravimetric and volumetric CO2 uptakes, respectively. These results can be explained by the different pore sizes and side group arrangements in the two classic framework prototypes, which demonstrate the delicate roles of ligand side groups in controlling porosity, surface characteristic and flexibility.  相似文献   

10.
Prostaglandins and (PG) have been reported to be an important gastric acid suppressive factor. However, the mechanism underlying is yet to be clearly established. In vitro study with gastric microsomes in presence of both PGE2 and PGI2 shows a stimulation of gastric H+ K+-ATPase activity below 1X10−6M and 2.5X10−7M concentrations respectively. However, with further increase in concentrations of both PGE2 and PGI2, H+, K+-ATPase activity shows an inhibition but PGI2 completely obliterates the K+ stimulated part of H+, K+-ATPase activity at higher concentration. The H+-ion transport study using chambered frog gastric mucosa shows that both PGE2 and PGI2 inhibit H+-ion transport at 5X10−6 M and 10X10−6M concentrations respectively but the effect of PGI2 is reversible. These differential effects of PGE2 and PGI2 on microsomal H+, K+-ATPase and on H+ transport my be caused by the differential effects of these phospholipid mediators with the gastric mucosal cell membrane. This in vitro investigation shows the role of prostaglandin (s) as a physiological switch/regulator of gastric H+ ion transport leading to the cessation of gastric acid secretion.  相似文献   

11.
Understanding the mechanical properties of optically transparent polydimethylsiloxane (PDMS) microchannels was essential to the design of polymer-based microdevices. In this experiment, PDMS microchannels were filled with a 100 μM solution of rhodamine 6G dye at very low Reynolds numbers (∼10−3). The deformation of PDMS microchannels created by pressure-driven flow was investigated by fluorescence microscopy and quantified the deformation by the linear relationship between dye layer thickness and intensity. A line scan across the channel determined the microchannel deformation at several channel positions. Scaling analysis widely used to justify PDMS bulging approximation was allowed when the applied flow rate was as high as 2.0 μl/min. The three physical parameters (i.e., flow rate, PDMS wall thickness, and mixing ratio) and the design parameter (i.e., channel aspect ratio = channel height/channel width) were considered as critical parameters and provided the different features of pressure distributions within polymer-based microchannel devices. The investigations of the four parameters performed on flexible materials were carried out by comparison of experiment and finite element method (FEM) results. The measured Young''s modulus from PDMS tensile test specimens at various circumstances provided reliable results for the finite element method. A thin channel wall, less cross-linker, high flow rate, and low aspect ratio microchannel were inclined to have a significant PDMS bulging. Among them, various mixing ratios related to material property and aspect ratios were one of the significant factors to determine PDMS bulging properties. The measured deformations were larger than the numerical simulation but were within corresponding values predicted by the finite element method in most cases.  相似文献   

12.
A short review is included of previous work on the blackening of photographic plates by positive rays and rays of an analogous nature.The blackening of Eastman x-ray plates, by positive ions, has been measured as a function of the energy of the ions of Li, Na, K, Rb, and Cs. The energy of the ions required to produce a photographic density of D = 0.3 with a one minute exposure at a current density of 1.32 × 10?8 amperes per cm.2 ranged from 1420 electron-volts in the case of cæsium to 860 electron-volts in the case of Li7. Approximately 105 ions are required at these energies to render developable one silver-halide grain. For a threshold density, D = 0.04, under the same conditions the energy ranged from approximately 920 to 460 electron-volts for Cs and Li7 respectively.Sensitivity comparisons were made between x-ray plates and process and schumannized process plates. Potassium ions with an energy as low as 137 electron-volts were recorded on Schumann plates, and it is possible that positive ions of one-third this energy can be recorded.  相似文献   

13.
Sodium-based dual-ion batteries (Na-DIBs) show a promising potential for large-scale energy storage applications due to the merits of environmental friendliness and low cost. However, Na-DIBs are generally subject to poor rate capability and cycling stability for the lack of suitable anodes to accommodate large Na+ ions. Herein, we propose a molecular grafting strategy to in situ synthesize tin pyrophosphate nanodots implanted in N-doped carbon matrix (SnP2O7@N-C), which exhibits a high fraction of active SnP2O7 up to 95.6 wt% and a low content of N-doped carbon (4.4 wt%) as the conductive framework. As a result, this anode delivers a high specific capacity ∼400 mAh g−1 at 0.1 A g−1, excellent rate capability up to 5.0 A g−1 and excellent cycling stability with a capacity retention of 92% after 1200 cycles under a current density of 1.5 A g−1. Further, pairing this anode with an environmentally friendly KS6 graphite cathode yields a SnP2O7@N-C||KS6 Na-DIB, exhibiting an excellent rate capability up to 30 C, good fast-charge/slow-discharge performance and long-term cycling life with a capacity retention of ∼96% after 1000 cycles at 20 C. This study provides a feasible strategy to develop high-performance anodes with high-fraction active materials for Na-based energy storage applications.  相似文献   

14.
Graphite and lithium metal are two classic anode materials and their composite has shown promising performance for rechargeable batteries. However, it is generally accepted that Li metal wets graphite poorly, causing its spreading and infiltration difficult. Here we show that graphite can either appear superlithiophilic or lithiophobic, depending on the local redox potential. By comparing the wetting performance of highly ordered pyrolytic graphite, porous carbon paper (PCP), lithiated PCP and graphite powder, we demonstrate that the surface contaminants that pin the contact-line motion and cause contact-angle hysteresis have their own electrochemical-stability windows. The surface contaminants can be either removed or reinforced in a time-dependent manner, depending on whether the reducing agents (C6→LiC6) or the oxidizing agents (air, moisture) dominate in the ambient environment, leading to bifurcating dynamics of either superfast or superslow wetting. Our findings enable new fabrication technology for Li–graphite composite with a controllable Li-metal/graphite ratio and present great promise for the mass production of Li-based anodes for use in high-energy-density batteries.  相似文献   

15.
Understanding the mineralogy of the Earth''s interior is a prerequisite for unravelling the evolution and dynamics of our planet. Here, we conducted high pressure-temperature experiments mimicking the conditions of the deep lower mantle (DLM, 1800–2890 km in depth) and observed surprising mineralogical transformations in the presence of water. Ferropericlase, (Mg, Fe)O, which is the most abundant oxide mineral in Earth, reacts with H2O to form a previously unknown (Mg, Fe)O2Hx (x ≤ 1) phase. The (Mg, Fe)O2Hx has a pyrite structure and it coexists with the dominant silicate phases, bridgmanite and post-perovskite. Depending on Mg content and geotherm temperatures, the transformation may occur at 1800 km for (Mg0.6Fe0.4)O or beyond 2300 km for (Mg0.7Fe0.3)O. The (Mg, Fe)O2Hx is an oxygen excess phase that stores an excessive amount of oxygen beyond the charge balance of maximum cation valences (Mg2+, Fe3+ and H+). This important phase has a number of far-reaching implications including extreme redox inhomogeneity, deep-oxygen reservoirs in the DLM and an internal source for modulating oxygen in the atmosphere.  相似文献   

16.
Many optimization strategies have been employed to stabilize zinc anodes of zinc-ion batteries (ZIBs). Although these commonly used strategies can improve anode performance, they simultaneously induce specific issues. In this study, through the combination of structural design, interface modification, and electrolyte optimization, an ‘all-in-one’ (AIO) electrode was developed. Compared to the three-dimensional (3D) anode in routine liquid electrolytes, the new AIO electrode can greatly suppress gas evolution and the occurrence of side reactions induced by active water molecules, while retaining the merits of a 3D anode. Moreover, the integrated AIO strategy achieves a sufficient electrode/electrolyte interface contact area, so that the electrode can promote electron/ion transfer, and ensure a fast and complete redox reaction. As a result, it achieves excellent shelving-restoring ability (60 hours, four times) and 1200 cycles of long-term stability without apparent polarization. When paired with two common cathode materials used in ZIBs (α-MnO2 and NH4V4O10), full batteries with the AIO electrode demonstrate high capacity and good stability. The strategy of the ‘all-in-one’ architectural design is enlightened to solve the issues of zinc anodes in advanced Zn-based batteries.  相似文献   

17.
Contact interface properties are important in determining the performances of devices that are based on atomically thin two-dimensional (2D) materials, especially for those with short channels. Understanding the contact interface is therefore important to design better devices. Herein, we use scanning transmission electron microscopy, electron energy loss spectroscopy, and first-principles calculations to reveal the electronic structures within the metallic (1T)-semiconducting (2H) MoTe2 coplanar phase boundary across a wide spectral range and correlate its properties to atomic structures. We find that the 2H-MoTe2 excitonic peaks cross the phase boundary into the 1T phase within a range of approximately 150 nm. The 1T-MoTe2 crystal field can penetrate the boundary and extend into the 2H phase by approximately two unit-cells. The plasmonic oscillations exhibit strong angle dependence, that is a red-shift of π+σ (approximately 0.3–1.2 eV) occurs within 4 nm at 1T/2H-MoTe2 boundaries with large tilt angles, but there is no shift at zero-tilted boundaries. These atomic-scale measurements reveal the structure–property relationships of the 1T/2H-MoTe2 boundary, providing useful information for phase boundary engineering and device development based on 2D materials.  相似文献   

18.
Oxygen derived free radicals have been implicated in a number of clinical disorders including atherosclerosis (1), ischemic heart disease (IHD) (2), post ischemic reperfusion injury (3) and respiratory distress syndrome (4). These radical are generated by sequential reduction of molecular oxygen; the primary product being superoxide anion (O2 .−) which is subsequently reduced to hydrogen peroxide (H2O2), hydroxy1 radical (OH.) and singlet oxygen (1O2). However the evidence for ODFR induced cell damage in various clinical disorders is still debated and rests largely on free radical scavenging studies, through electron paramagnetic resonance spectroscopic (EPRS) studies have provided direct evidence for ODFR generation following coronary artery ligation (5). By definition, a free radical is an atom, ion or molecule with one or more unpaired electrons (the presence of unpaired electron in a free radical being represented by a superscribed bold dot-R.) and may be formed as a result of homolytic fission of a covalent bond or by electron transfer reactions, and may have cationic (NH3 +), anionic (O2 .−) or neutral (NO) characteristics. The most important in vivo source for these radical species have been found to be univalent biochemical redox reactions involving oxygen. (a) A:B→A.+B. (b) A:+B→A.+B.  相似文献   

19.
伊犁谷地灰钙土和风沙土剖面特性及生态建设意义   总被引:2,自引:0,他引:2  
西部的生态环境安全关系到国家的生态安全。研究土壤特性及其垂直分布,能对区域生态环境建设和可持续发展提供重要的理论基础和指导。灰钙土与风沙土是新疆伊犁谷地的两种主要土壤类型。本文在对新疆伊犁谷地实地考察基础上,运用42个灰钙土剖面和12个风沙土剖面自然发生层各层的土壤样品测试数据—土壤有机质、pH值、电导率、总盐、八大阴阳离子,研究了灰钙土和风沙土土壤特性的垂直分布,并进行了比较;在此基础上提出区域生态建设中土壤利用和保护的建议。研究表明,伊犁河谷的不同土壤,其土壤特性的垂直分布和变化具有一致性和差异性。一致性体现在有机质和K+的含量随土壤深度增加而减少,pH值、CO32-、Mg2+和Na+的含量随土壤深度增加而增加。差异性体现在两类土壤的有机质、pH值、电导率和总盐在数量上不同。此外,两类土壤的电导率、总盐及SO42-,Cl-,HCO3-,Ca2+的含量随土壤深度发生变化的趋势不同。  相似文献   

20.
As a promising low-cost energy storage device, the development of a rechargeable potassium-ion battery (KIB) is severely hindered by the limited capacity of cathode candidates. Regarded as an attractive capacity-boosting strategy, triggering the O-related anionic redox activity has not been achieved within a sealed KIB system. Herein, in contrast to the typical gaseous open K-O2 battery (O2/KO2 redox), we originally realize the reversible superoxide/peroxide (KO2/K2O2) interconversion on a KO2-based cathode. Controlled within a sealed cell environment, the irreversible O2 evolution and electrolyte decomposition (induced by superoxide anion (O2) formation) are effectively restrained. Rationally controlling the reversible depth-of-charge at 300 mAh/g (based on the mass of KO2), no obvious cell degradation can be observed during 900 cycles. Moreover, benefitting from electrolyte modification, the KO2-based cathode is coupled with a limited amount of K-metal anode (merely 2.5 times excess), harvesting a K-metal full-cell with high energy efficiency (∼90%) and long-term cycling stability (over 300 cycles).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号