首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 143 毫秒
1.
一道IMO试题的多种等价形式   总被引:1,自引:1,他引:0  
笔者在研究不等式的过程中,发现下列不等式与许多重要的不等式等价。 问题1 设a、b、c为三角形的三边长。求证: a~2(b c-a) b~2(c a-b) c~2(a b-c)≤3abc。 (1) (第6届IMO试题) 问题2 若△ABC的外接圆、内切圆半径分别为R、r,面积为△,则  相似文献   

2.
<正>众所周知,在△ABC中,若R、r分别为其外接圆和内切圆半径,则有R≥2r.这是著名的Euler不等式,本文给出其三个仅与边相关的最新加强.命题1在△ABC中,a、b、c为其三边长,R、r分别为其外接圆和内切圆半径,则有R/2r≥(b~2+c~2)/2bc.(1)证明记S为△ABC面积,由熟知的三角恒等式abc=4RS及S=(1/2)r(a+b+c)知,  相似文献   

3.
第十三届(1953牛)普特南数学竞赛有这样一道试题: 设实数a,b,c中任意两个之和大于第三个,求证 2/3(a+b+c)(a~2+b~2+c~2) >a~3+b~3+c~3+abc. (1) 事实上,我们有命题设实数a,b,c中任意两个之和大于第二个,则 2/3(a+b+c)(a~2+b~2+c~2) ≥a~3+b~3+c~3+3abc. (2)当且仅当a=b=c时等号成立. 证明:不难验证,(2)式等价于 (b+c-a)(c+a-b)(a+b-c)  相似文献   

4.
我们知道,对于任意两个正实数a、b恒有不等式:a~(a-b)≥b~(a-b)(※)成立。本文利用这一不等式给出几个难度较大的不等式的简洁证明。例1 已知a、b、c∈R~+,求证: a~(2a)b~(2b)c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b)(1978年上海市中学数学竞赛试题) 证明由(※)得 a~(a-b)≥b~(a-b),b~(b-a)≥c~(b-c),c~(c-a)≥a~(c-a)。以上不等式两边分别相乘得 a~(a-b)·b~(b-c)·c~(c-a)≥b~(a-b)·c~(b-c)·a~(c-a)。整理得:a~(2a)·b~(2b)·c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b) 例2 设a、b、c∈R~+.求证: a~ab~bc~c≥(abc)(a+b+c)/3(1974年美国第三届奥林匹克竞赛试题)。证明由例1知  相似文献   

5.
在对含有多个字母的代数式进行变形时,适当地确立一个字母作“元”。并按这个“元”来分析,可使一些数学问题得到规范化和简单的解法。一分解因式中按元分组 [例1] 把a~4(b-c) b~4(c-a) c~4(a-b)分解因式略解:原式=(b-c)a~4 (c~4-b~4)a bc(b~3-c~3)<以a为元> =(6-c)(a~4-ab~3-ac~3-abc~2-ab~2c b~3c bc~3 b~2c~2) =(6-c)[(c-a)b~3 (c~2-ac)b~2 (c~3-ac~2)b (a~4-ac~3)]<以6为元> =(6-c)(c-a)(b~3 cb~2 c~2b-a~3-ac~23-a~2c)  相似文献   

6.
在关于不等式的许多命题中,都有一个“当且仅当…时取等号往往不被重视,其实,在解题时它们是很有作用的。本文介绍解题的一些例子。例1.设a,b,c是三角形的三边,则此三角形为等边三角形的充要条件是:a~2(b+c-a)+b~2(c+a-b)+c~2(a+b-c)=3abc (1) 证明:令b+c-a=x,c+a-b=y,a+b-c=z, 则z,y,z>0,  相似文献   

7.
文[1]介绍了第6届IMO试题sum a~2(b c-a)≤3abc ① (其中∑表示循环和)的等价形式 sum a~2/((s-b)(s-c))≤6R/r ②的加强 sum a~2/((s-b)(s-c))≤4/3(4R/r 1) ③ 本文介绍③式的下界估计。 命题 设s、R、r分别为△ABC半周长、外接圆半径、内切圆半径,则有  相似文献   

8.
<正>近日,笔者发现了一个关于三角形边长的不等式链,现介绍如下.命题在△ABC中,a,b,c分别为其三边长,R,r分别为其外接圆和内切圆半径,则有a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc≥(4-2r/R)abc≥3abc.证明先证明a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc.  相似文献   

9.
董林 《中等数学》2004,(6):19-19
命题 设△ABC的三边长、外接圆半径、内切圆半径分别为a、b、c、R、r.则有b2 c22bc ≤ R2r.①证明 : 记△ABC的面积为S .由abc =4RS及S =12 r(a b c)知式①等价于b2 c22bc ≤abc(a b c)1 6S2 .②由海伦公式知1 6S2 =(a b c) (b c -a)·(c a -b) (a b -c) .③则式②等价于1 6S2 (b2 c2 ) ≤2ab2 c2 (a b c) (a b c) (b c-a) (c a -b)·(a b-c) (b2 c2 ) ≤2ab2 c2 (a b c) 2ab2 c2 - (b c -a) (c a -b)·(a b -c) (b2 c2 ) ≥0 b2 [ac2 - (b c-a) (c a -b)·(a b -c) ] c2 [ab2 - (b c-a)·(c a -b) (a …  相似文献   

10.
IMO24-6是:已知a,b,c为三角形三边,则 a~2b(a-b) b~2c(b-c) c~2a(c-a)≥0。 (1) (1)的一个等价形式是  相似文献   

11.
<正>本文约定:△ABC三边长分别为a、b、c,面积为△,s、R、r分别表示△ABC的半周长,外接圆半径和内切圆半径.在△ABC中,有不等式a~2+b~2+c~2≥■△(1)这是著名的Weisenbock不等式~(\[1\]).(1)已有很多种形式的加强,其中最著名的是费-哈不等式  相似文献   

12.
初中《几何》第二册106页第3题,要求用两直角边a、b的代数式表示直角三角形内切圆半径r,结果为r=(a+b-(a~2+b~2)~(1/2))/2。在直角三角形中,斜边c=(a~2+b~2)~(1/2),那么上式可以用a、b、c的代数式表示为r=(a+b-c)/2。不过这样一来,r的表达式就不止一种了。  相似文献   

13.
<正>命题在△ABC中,a、b、c分别为其三边长,R、r分别为其外接圆和内切圆半径,则有a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc≥4-2r()Rabc≥3abc.证明先证明a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc.由于a、b、c是三角形的三边长,所以有a+b>c,即a+b-c>0,同理有b+c-a>0,c+a-b  相似文献   

14.
设a、b、c∈R ,求证: a~3 b~3 c~3≥3abc a(b-c)~2 b(C-a)~2 c(a-b)~2。 这个不等式是著名不等式a~3 b~3 c~3≥3abc的一个加强,在中学数学杂志上曾引起了一些讨论。它的等价形式曾作为瑞典1983年的竞赛试题:若a、b、c∈R~ ,求证:abc≥(-a b c)(a-b C)(a b-c) (1) 联想到(1)的右端与海伦公式的相似之处,本文将(1)进一步加强为:  相似文献   

15.
1906年,纽贝格(见文[1])得到:若△ABC三边长及外接圆、内切圆半径分别为a、b、c、R、r,则 36r~2≤a~2 b~2 c~2≤9(R~2) (1) 当且仅当a=b=c时等号成立。 笔者发现上述不等式可加细为: 36r~2≤∑a~2-∑(a-b)~2≤∑a~2  相似文献   

16.
设三角形的内切圆和外接圆的半径分别为r和R,则2r≤R。对于上述著名的欧拉不等式,本文给出它的一个链,同时还给出欧拉不等式在四边形中的推广及其链。一、欧拉不等式的链定理1 设三角形的内切圆和外接圆的半径分别为r和R,三边为a、b、c,则2r≤(abc/(a+b+c))~(1/2)≤R。  相似文献   

17.
公式(a+b+c)(a~2+b~2+c~2-ab-bc-ca)=a~3+b~3+c~3-3abc(以下记为公式)有不少应用。而公式本身的证明并不困难,运用整式乘法或因式分解就可予以证明,这是初中一年级学生就能接受的。如果在初中代数教学中,讲解整式乘法时就把它提出来,到因式分解时再次熟悉,后继内容的教学中不断应用,这对学生掌握知识,发展智能会有裨益的。一、公式的征明: 证一:将左边按a的降幂排列左边=[a+(b+c)][a~2-(b+c)a+(b~2+c~2-bc)] =a~3-(b+c)a~2+(b~2+c~2-bc)a+(b+a)a~2-(b+c)~2a+(b+c)(b~2-a~2-bc) =a~3+(b~2+c~2-bc-b~2-2bc-c~2)a+b~2+c~3 =a~3+b~3+c~2-3abc。证二、用因式分解右边=(a+b)~3-3ab(a+b)+c~3-3abc =(a+b)~3+c~3-3ab(a+b+c) =(a+b+c)~3-3c(a+b)(a+b+c)  相似文献   

18.
设△ABC的边和面积分别为a,b,c和△,则a~2 b~2 c~2≥3~(1/4)△. 证1 比较法.a~2 b~2 c~2-3~(1/4)△=2(b~2 c~2)-4bcosin(A 30°)≥2(b-C)~2≥0. 证2 (a~ b~2 c~2)-(3~(1/4)△)~2=(a~2 b~2 c~2)-3(a b c)(a b-C)·(b c-a)·(C d-b)=2[(a~2-b~2)~2 (b~2-c~2)`2 (c~2-a~2)~2]≥0.  相似文献   

19.
正弦定理和余弦定理是架起三角形边角关系的两座桥梁,是解三角形的两个有力武器,锐不可当.重点难点1.正弦定理:a/(sinA)=b/(sinB)=c/(sinC)=2R(R表示△ABC外接圆的半径).2余弦定理:a~2=b~2+c~2-2bccosA;b~2=c~2+a~2-2cacosB:c~2=a~2+b~2-2abcosC.3.三角形面积公式:S=1/2ah_a(h_a  相似文献   

20.
我们记P(a、b、c)=a~3+b~3+c~3-3abc这个多项式的因式分解公式为: P(a、b、c)=a~3+b~3+c~3-3abc=(a+b +c)(a~2+b~2+c~2-ab-bc-ca), 这个公式在因式分解中,在多项式的恒等变换中以及在解方程中都有一定的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号