首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
三角形中位线定理是一个重要定理.其应用极为广泛.本文结合实例介绍其应用. 例1 如图1,D是△ABC的边BC的中点,E、F是AC边上的两点,且AB=CE,AF=EF,DF的延长线交BA的延长线于G.求证:AF=AG. 分析由D、F分别是BC、AE的中点联想到三角形的中位线定理,为此可连结  相似文献   

2.
2006年全国初中数学竞赛预赛暨2005年山东省初中数学竞赛刚刚结束,其中第13题是这样的:如图1,△ABC中,AB=1,AC=2,D是BC的中点,AE平分∠BAC交BC于E,且DF∥AE,求CF的长.在参考解答中.提供了以下的解答方法:解如图2,过E分别作EH⊥AB,交AB于H,EG⊥AC,交AC于点G,因AE平分∠BAC,所以有EH=EG,从而有CBEE=SS△△AACBEE=AACB=21,又由DF∥AE,得CFCA=CCED=21·CBEC·21·BEC+ECE=12BECE+1=2112+1=43.所以CF=43×CA=43×2=23.图1图2在阅卷的过程中,我发现学生还有不同的解答方法:方法1如图3,过点D作DM∥AB交AC…  相似文献   

3.
例l如图1,D为线段AB的中点,E为线段刀C的中点,C在AB的延长线上,AC一12,EC一4,求AD的长, 解’:E为BC的中点,EC一4,:.BC二ZEC一8. 丫AC~12, .’. AB一AC一BC一4.A D B Ec图1丫D为AB的中点,。.。AD-喜AB一2.乙 例2如图2,已知线段AB~16,C点在线段AB上,D和E分别是AC、CB的中点,那么DE的长为一解题方法一 解‘:D和E分别是AC、CB的中点,‘---日匕--~山~~~~~~A D C EB 1,~:二二-二,且L 艺图2…DC:。DE例3一DC+EC一EC= 1~n十万万七力 乙 X1一2 1,,~.on、一二二L入七十七力少 乙 1,。-二丁J气力- Z16=8如图3,延长线…  相似文献   

4.
定理1 △ABC中,AD是中线,F为AD上任一点、BF交AC于E,若AE(?)EC=m,则AF:FD=2m.证 过D作DG∥BE交AC于G(如图),则AF:FD=AE:EG.∵ D为BC中点,∴AF/FD=AE/((1/2)EC),即AF:FD=2m.定理2 △ABC中,D为BC上一点,E为AC上的一点,AD、BE交于点F,若AE:EC=m,CD:DB=n,则AF:FD=m(1 n).证明 过D作DG∥BE交AC于G(如图),则  相似文献   

5.
题目如图1,在△ABC中,AB=AC,M是BC的中点,D、E、F分别是BC、CA、AB上的点,且AE=AF,△AEF的外接圆交线段AD于点P.若点P满足PD~2=PE·PF,证明:  相似文献   

6.
在1997年安徽省初中数学竞赛中,有这样一道题:例1如图1,在△ABC中,∠BAC=90°AB=AC,D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF.分析:过C作CM⊥AC交AF延长线于  相似文献   

7.
重视双基教学是我国数学教学的优良传统,通过变式训练发展双基,提高学生的能力是数学教学中行之有效的方法.掌握一些编写变式训练题的常用方法,对于提高课堂教学效益,培养学生的解题能力是非常必要的.1变式训练的方法图1例题已知:如图1,△ABC中,∠ACB=90°,AC=BC,AE=CF,D是AB的中点.求证:(1)DE=DF;(2)DE⊥DF.1.1变为逆命题将原命题的题设和结论(或部分题设和结论)置换,研究原命题的逆命题或偏逆命题是研究数学命题的常用方法.变式1已知:如图1,△ABC中,∠ACB=90°,AC=BC,D是AB的中点,DE⊥DF.求证:(1)DE=DF;(2)AE=CF.变式…  相似文献   

8.
中点是几何图形中的特殊点,与中点有关的线段有三角形的中线、中位线、梯形的中位线等.利用中点很容易构造全等三角形、等腰三角形.在解题中,若能灵活运用它的相关性质,可使许多问题得到迅速解决.一、由中点联想三角形的中线例1如图1,△ABC中BD和CE是高,M为BC中点,P为DE的中点.求证:PM⊥DE.分析:由∠BDC=∠BEC=90°,M为BC中点,可得MD=ME=12BC,故△MDE为等腰三角形.又P为DE中点,根据等腰三角形底边上的中线也是底边上的高即可得证.二、由中点联想中位线例2如图2,梯形ABCD中,AD∥BC,AD相似文献   

9.
贵刊 2 0 0 2年第 1期上刊登的朱绍智、王国平两位老师《一道竞赛试题的 5种证法》.看后很受启发 ,现补充两种证法以供读者参考 .其中 ,证法 1辅助线自然天成 ,证法简洁 ,可称最优解法 ;证法 2不作辅助线 ,用代数方法 ,思路新颖 .图 1题目 :如图 1,△ ABC中 ,AC =BC,∠ ACB =90°,D是 AC上一点 ,AE⊥BD交 BD延长线于 E,且AE =12 BD.求证 :BD是∠ ABC的角平分线 .证法 1:延长 AE、BC交于 F ,因为∠ ACB =90°,AE⊥ BD,所以∠ 1=∠ 3 .(同为∠ F余角 )又 AC =BC所以△ ACF≌△ BCD(ASA)所以 AF =BD所以 AE =12 BD =…  相似文献   

10.
本文现将一九九四年吉林省一中考试题的10种解法及其推广的妙用介绍如下,供参考。 题目如图,在△ABC中,M是AC边中点,E是AB上一点,且AE=1/4AB,连结EM并延长交BC的延长线于D。求证:BC=2CD。  相似文献   

11.
例1 如图1所示,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化过程中,有下列结论:  相似文献   

12.
在解一点分线段为二倍关系的几何题中 ,可以构造以该点为重心的新三角形 .利用三角形的重心性质解题 ,有时可以收到很好的效果 ,因为解题是构造性的 ,因此在培养学生的解题能力有很大帮助 :其解法新颖别致、能提高学生的学习兴趣 .1 证线段相等例 1 △ABC中 ,AB =AC ,E在AB上 ,BE =2EA .以AB为直径的圆交BC于D .连AD、CE相交于F .求证 :AF =FD .证明 如图 1,利用BE=2EA ,构造△BGC使E是△CBG的重心 .这样得A是GC中点 ,H是GB中点 .AD⊥BC ,由AB =AC知D是BC的中点 ,因此四边形HDCA为 .由此得AF =FD .图 1   …  相似文献   

13.
一、基本图形 基本图形1:如图1,A、B、C为⊙O上三点,点D为BC的中点,过点D作直线AB、AC的垂线,E、F分别为垂足,则AE=AF,BE=CF,DE=DF,AB+AC=2AE=2AF.  相似文献   

14.
正题目已知:如图,△ABC中,D是AB上一点E是AC上一点,且AD=AE,DE的延长线交BC的延长线于F.求证BFFCBDCE.证法一:如图1,作CGAB△FCG△FBDBFFC=BDCG1=4AD=AE12231334CE  相似文献   

15.
静止是相对的,运动是绝对的.在数学解题中,有时用“动”的观点来处理“静”的问题,即“化静为动”,常常能收到出其不意的效果.引例(2011湖北黄岗中考)如图1,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上的中点,过D点作DE上DF,交AB于点E,交BC于点F.若AE=4,FC=3,求的长.  相似文献   

16.
三角形的中位线定理揭示了其中位线与第三边的位置关系与数量关系,巧用它可以证明若干与线段中点有关的问题. 例1 如图1,△ABC中,BD 平分∠ABC,AD BD于D,E为AC的中点, 求证:DE∥BC. 证明:延长AD交BC于F. ∵BD平分∠ABC,又AD BD 于D,∴AD=FD,又∵AE= CE,由三角形中位线定理得: DE∥FC,∴DE∥BC.  相似文献   

17.
本文对一道既含有线段中点又含有角平分线的典型几何题进行分裂演变,得出了一些有趣的、新异的几何题. 原题 如图1,在△ABC中,AB=AC,D为AC的中点,ADB的平分线交AB于点E,△ADE的外接圆交BD于点N求证:BN=2AE. 一、分裂中点 首先考虑把中点D分裂为线段AC的内等截点D1、D2.如图2,对应原题中的角平分线DE有D1E1,D2E2,对应于原题中的BN与AE的BN1,BN2及AE1,AE2之间有什么结论呢?  相似文献   

18.
2001年江苏省第十五届初中数学竞赛第二试初二第17题为:如图1,△ABC中,AC=BC,∠ACB=90°D是AC上一点,AE⊥BD交BD的延长线于E,且AE=1/2BD,求证:BD是∠ABC的角平分线.  相似文献   

19.
三角形中位线定理是一个很重要的定理,用它来证明多中点问题,经常要用“取中点,连中点得中位线”的方法,但在何处取中点呢?这个问题需要认真地研究.请看下面的例题.例1如图1,在△ABC中,点D、E分别在AB、AC上,且DB=EC,M、N分别为BE、CD的中点,直线MN交AB于P点,交AC于Q点,求证:AP=AQ.证明:取BC的中点F,连MF、NF,则NF∥DB,MF∥EC,且NF=12DB,MF=12EC.因为DB=EC,所以MF=NF,∠1=∠2.又因为∠1=∠4,∠2=∠3,所以∠3=∠4,所以AP=AQ.说明:证明过程简明易懂.但是有不少同学可能会问:为什么会想到要取BC的中点呢?这是因为D…  相似文献   

20.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号