首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
我们知道,与椭圆x~2/a~2+y~2/b~2=1相切于(X_0y_0)点的切线方程是x_0x/a~2+y_0y/b~2=1 ①我们把直线y=kx+(m≠O) ②变形为 -ka~2x/m/a~2+b~2/m~y/b~2=1 ③如果直线②与椭圆也相切于(x_0,y_0)点,则①和③表示同一条直线,所以有 x_0=-ka~2/m,y_0=b~2/m (Ⅰ) 用同样的方法,可类似地求出圆x~2+y~2=r~2双曲线x~2/a~2-y~2/b~2=1和抛物线y~2=2px与  相似文献   

2.
平面上的椭圆、双曲线、抛物线的标准方程为x~2/a~2±y~2/b~2=1、y~2=2px。在其曲线上的点(x_0,y_0)处的切线方程可表示为x_0x/a~2±y_0y/b~2=1、y_0y=p(x x_0)的形式。这种形式与原曲线方程有明显的对应关系,便于记忆,并可以推广到平面上高次曲线。为了便于讨论,我们把平面直角坐标系中3次曲线方程的一般形式表示为  相似文献   

3.
椭圆以某定点为中点的弦并非一定存在,那么,中点弦存在的充要条件是什么?有何应用,本文作下列探讨: 一中点弦方程的一种求法。设椭圆b~2x~2 a~2y~2-a~2b~2=0,(a>0,b>0)…(1) 及定点P_0(x_0,y_0),若以P_0为中点的弦存在,且两端点分别为A(x_1,y_1),B(x_2,y_2) 则:b~2x_1~2 a~2y_1~2-a~2b~2=0 b~2x_2~2 a~2y_2~2-a~2b~2=0 两式相减整理得: (y_1-y_2)/(x_1-x_2)=(x_1 x_2)/(y_1 y_2)·b~2/a~2 =-b~2/a~2·x_0/y_0 (x_1≠x_2) 即k=-(b~2x_0)/(a~2y_0),代入点斜式得中点弦方程:a~2y_0y b~2x_0x=a~2y_0~2 b~2x_0~2……(2) 如果x_1=x_2,那么y_0=0,中点弦方程为x=x_0仍包含在(2)中。  相似文献   

4.
文[1]、[2]、[3]分别给出了直线方程:x_0x y_0y=r~2,(x_0x)/a~2 (y_0y)/b~2=1,(x_0x)/a~2-(y_0y)/b~2=1的3种几何意义,笔者认为直线方程:y_0y=p(x_0 x)(p>0)也有类似的几何意义,而且它揭示了圆及二次曲线内在的一般规律.定理1:若点 P(x_0,y_0)在抛物线 y~2=  相似文献   

5.
将平面上一点P(x_1,y_1),移到新的位置P'(x_1,y_1'),使y_1'=ky_1。这种变换叫做点P向X轴均匀压缩。常数k≠0叫做压缩系数。本文下面取0b>0),可得出椭圆x~2/a~2+y~2/b~2=1。证明如下。设P(x,y)是圆上任意一点,经压缩变换后的对应点是P'(x',y'),则有x'=x,y'=ky=b/a y,由此得y=a/b y',代入x~2+y~2=a~2,得x'~2+a~2/b~2 y'~2=a~2,于是有x'~2/a~2+y'~2/b~2=1,  相似文献   

6.
一阶导数与二次曲线弦中点间存在着一种内在联系,这种联系为解决二次曲线中点弦一类问题开辟了一条较为简捷的路径.本文就以定理形式揭示这种联系并列举应用. 定理:椭圆x~2/a~2 y~2/b~2=1的以斜率为k的一组平行弦中点轨迹方程是x~2/a~2 yy_x~'/b~2=0(※)(|x|≤a,|y|≤b)其中y_x~'就是平行弦的斜率k,它等于直线(※)与椭圆交点处切线的斜率. 证明:设点P(x_0,y_0)是以k为斜率的弦P_1P_2的中点,点P_1(x_1,y_1),P_2(x_2,y_2)  相似文献   

7.
常看到一些写给中学生的书和数学杂志上介绍直线的参数方程时称经进点P_0(x_0,y_0),倾角为α的直线的参数方程的标准式是:x=x_o tcosα y=y_o tsinα(t是参数),又将这样的形式x=x_o at y=y_o bt(t是参数,a~2 b~2≠1)叫做一般形式.并介绍将一般形式化为标准形式的方法只须在t的系数上除以(a~2 b~2)~(1/2)构成t的系数的平方和为1.即: (t为参数) (※) 为了叙述方便,我们姑且承认其“一般式”和“标准式”的称呼法. 显然,作者称(※)为标准式是认为该方程中参数t的几何意义是直线上P点和P_0(x_0,y_0)点的有向线段的数量.但我认为方程(※)还不一定是直线参数方程的标准式,其原因如下:  相似文献   

8.
定义:连结椭圆上任意两点的线段叫弦.过椭圆中心的弦叫直径.类似地可定义双曲线的直径.如图1,平行于直径CD的弦的中点的轨迹AB和直径CD叫互为共轭直径.类似地可定义双曲线的共轭直径. 定理1 已知AB、CD为椭圆x~2/a~2 y~2/b~2=1的一对共轭直径,其斜率分别为k_(AB)、K_(CD),那么K_(AB)·K_(CD)=-b~2/a~2. 略证:如图1,设平行弦EF簇的斜率为k(即K_(CD)),则平行弦EF簇的方程为 y=kx t(t为参数).① 又椭圆方程为 x~2/a~2 y~2/b~2=1. ② ①代入②整理得 (a~2k~2 b~2)x~2 2a~2tkx a~2(t~2-b~2)=0. ③ 由韦达定理,得x_1 x_2=-(2a~2tk/a~2k~2 b~2). 设M(x′,y′)是EF的中点,则 x′=1/2(x_1 x_2)=-(a~2tk/a~2k~2 b~2) ④ 点M在EF上,则y′=kx′ t. ⑤ 由④、⑤消去参数t得 y′=-b~2/a~2k x′. ∵k_(AB)=k_(OM)=-(b~2/a~2k). ∴k_(AB)·k_(CD)=-(b~2/a~2k)·k=-(b~2/a~2). 推论1 AB是椭圆x~2/a~2 y~2/b~2=1的任意一条弦,P为AB的中点,O为椭圆的中心,则 K_(AB)·K_(OP)=-(b~2/a~2).  相似文献   

9.
学过《平面解析几何》的同学都知道:过椭圆x~2/a~2+y~2/b~2=1上一点P(x_0,y_0)的切线的方程是(x_0x)/a~2+(y_0y)/b~2=1①因(x_0~2)/a~2+(y_0~2)/b~2=1,又可写成(x_0x)/a~2+(y_0y)/b~2=(x_0~2)/a~2=(y_0~2)/b~2②, 一些细心的同学会问:当P(x_0,y_0)点不在椭圆上时,方程①或②的几何意义是什么呢?过椭圆外定点的椭圆的切线能否用方程①或②来表示呢?而少数粗心的同学在解题时没考虑点P的位置,直接套用方程①或②导致错误的情况时有发生。因此,有必要引导学生利用熟知的原理和方法,进行一番较深入的探讨。下面我们给出:  相似文献   

10.
文[2]作为文[1]的续文,在直线方程(x_0x)/(a~2) (y_0y)/b~2=1的三种几何意义探讨启发下,给出了直线方程(x_0x)/(a~2)-(y_0y)/(b~2)=1的几何意义.本文再给出直线方程y_0y=p(x x_0)的几何意义,以告对此类问题的探讨圆满解决.  相似文献   

11.
我们知道,过定点P_0(x_0,y_0)的直线l的参数方程的一般形式为: x=x_0+at,y=y_0+bt。(t为参数,a~2+b~2≠0) (1) 这时,如a~2+b~2≠1,则参数t没有明显的几何意义。通过“标准化”,即得到标准形式:  相似文献   

12.
正笔者在利用几何画板研究有心圆锥曲线的切线时发现一个简洁有趣的性质,现介绍如下:命题1自圆C_1:x~2+y~2=a~2+b~2上任一点P向椭圆C_2:x~2/a~2+y~2/b~2=1(a,b0)引两条切线,则这两条切线互相垂直.证明:设P点的坐标为(x_0,y_0),自这一点向椭圆C_2引的两切线分别为l_1和l_2.(1)当切线的斜率存在且不为0时,设过P的切线方程为y-y_0=k(x-x_0),由y-y_0=k(x-x_0),x~2/a~2+y~2/b~2=1得(b~2+k~2a~2)x~2+  相似文献   

13.
1.若遇a≤x~2 y~2≤b(a,b∈R~ ),可作代换x=t·cosφ,y=tsinφ,其中a~(1/2)≤t≤b~(1/2) 例1 已知1≤x~2 y~2≤2,求w=x~2 xy y~2的最值. 解:∵1≤x~2 y~2≤2,∴设x=tcosθ,y=tsinθ,其中1≤t≤2~(1/2),∴w=t~2cos~2θ t~2cosθsinθ t~2sin~2θ=t~2·(1 (1/2)sin2θ),而(1/2)≤1 sin2θ≤(3/2),∴(1/2)≤w≤3. 2.若遇b~2x~2 a~2y~2=a~2b~2(a,b∈R~ ),可作代换x=acosθ,y=bsinθ(此处要注意解析几何中椭圆、双曲线的参数方程的应用) 例2 已知x、y满足x~2 4y~2=4,求w=x~2 2xy 4y~2 x 2y的最值.  相似文献   

14.
为了研究问题方便,对点 p(x_1,y_1)与双曲线(x~2/a~2)-(y~2/b~2)=1的位置关系,定义如下:给定点 p(x_1,y_1)及双曲线(x~2/a~2)-(y~2/b~2)=1.  相似文献   

15.
一条直线和一条圆锥曲线的位置可以有相交、相切或相离三种情况。下面给出在给定一条直线方程和一条圆锥曲线的方程的条件下,判定它们的位置关系的定理。定理一已知直线l:Ax+By+C=0和椭圆E:x~2/a~2+y~2/b~2=1,若a~2A~2+b~2B~2>C~2则l和E相交;若a~2A~2+b~2B~2=C~2则l和E相切:若 a~2A~2+b~2B~2相似文献   

16.
每期一题     
题:从射线OB与圆x~2 y~2=2ax的交点B向Ox轴作垂线BC,C为垂足,求C在OB上射影的轨迹方程。解一:选取过定点的动直线斜率为参数。如右图,设直线OB斜率为k(k为参数),OB直线方程为y=kx, y=kx由 { x~2 y~2=2ax, x_1=0 x_2=2a/(1 k~2) ∴ { { y_1=0 y_2=2ak/(1 k~2) 则C(2a/(1 k~2),0)  相似文献   

17.
<正>我们知道,双曲线(x~2)/(a~2)-(y~2)/(b~2)=1的渐近线方程为y=±(b/a)x.一般地,还有下面的一些结论:(1)双曲线(x~2)/(a~2)-(y~2)/(b~2)=λ(λ>0)的渐近线方程亦为y=±bax,即xa±yb=0,就是(x~2)/(a~2)-(y~2)/(b~2)=0.(2)双曲线(x~2)/(a~2)-(y~2)/(b~2)=λ(λ<0)的渐近线方程亦为(x~2)/(a~2)-(y~2)/(b~2)=0,故双曲线(x~2)/(a~2)-(y~2)/(b~2)=λ(λ≠0)的渐近线方程为  相似文献   

18.
92年上海市有这样一道高考题: 设动直线l垂直于x轴,且与椭圆x~2/4 y~2/2=1交于A、B两点,P是l上满足|PA|·|PB|=1的点,求点P的轨迹方程,并说明轨迹是什么图形? 解:如图1,设点P(x,y),点A(x_1,y_1),则B(x,-y_1)。由于A、B两点在椭圆上,所以又由1-x~2/4=y_1~2/2等,得-2相似文献   

19.
我们知道,参数方程是解析几何中的一个难点,而直线的参数方程及其应用又是该章节的重点,因此,深刻系统全面地对直线的参数方程及其应用进行分析是十分必要的.在平面直角坐标系中,经过定点P_0(x_0,y_0),倾角为α(0≤α≤π)的直线(如图)的参数方程是x=x_0 tcosα y=y_0 tsinα其中t是参数.它的几何意义是:|t|的大小等于定点P_0(x_0,y_0)到动点P(x,y)的距离,而t表示有向线段P_0P的数量,P点在P_0点的上方t为正,P点在P_0点的下方t为负.  相似文献   

20.
大家知道如下的一个基本关系:若 f(a,b)=0,则点(a,b)必在方程 f(x,y)=0的曲线上.比如,由 a~2 b~2=1,我们可以得出:1°,点(a,b)在圆 x~2 y~2=1上;2°,点(a,b~2)在抛物线 x~2 y=1;3°,点(a~2,b~2)在直线上 x y=1上;4°,点(a,b)在直线 ax by=1上,等等.在解题中,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号