首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Paralympic sports, biomechanical optimisation of movements and equipment seems to be promising for improving performance. In handcycling, information about the biomechanics of this sport is mainly provided by case studies. The aim of the current study was (1) to examine changes in handcycling propulsion kinematics and kinetics due to increasing workloads and (2) identify parameters that are associated with peak aerobic performance. Twelve non-disabled male competitive triathletes without handcycling experience voluntarily participated in the study. They performed an initial familiarisation protocol and incremental step test until exhaustion in a recumbent racing handcycle that was attached to an ergometer. During the incremental test, tangential crank kinetics, 3D joint kinematics, blood lactate and ratings of perceived exertion (local and global) were identified. As a performance criterion, the maximal power output during the step test (Pmax) was calculated and correlated with biomechanical parameters. For higher workloads, an increase in crank torque was observed that was even more pronounced in the pull phase than in the push phase. Furthermore, participants showed an increase in shoulder internal rotation and abduction and a decrease in elbow flexion and retroversion. These changes were negatively correlated with performance. At high workloads, it seems that power output is more limited by the transition from pull to push phase than at low workloads. It is suggested that successful athletes demonstrate small alterations of their kinematic profile due to increasing workloads. Future studies should replicate and expand the test spectrum (sprint and continuous loads) as well as use methods like surface electromyography (sEMG) with elite handcyclists.  相似文献   

2.
An awareness of sex differences in gait can be beneficial for detecting the early stages of gait abnormalities that may lead to pathology. The same may be true for wheelchair propulsion. The aim of this study was to determine the effect of sex on wheelchair biomechanics and mechanical efficiency in novice young able-bodied wheelchair propulsion. Thirty men and 30 women received 12 min of familiarisation training. Subsequently, they performed two 10-m propulsion tests to evaluate comfortable speed (CS). Additionally, they performed a 4-min submaximal propulsion test on a treadmill at CS, 125% and 145% of CS. Propulsion kinetics (via Smartwheel) and oxygen uptake were continuously measured in all tests and were used to determine gross mechanical efficiency (GE), net efficiency (NE) and fraction of effective force (FEF). Ratings of perceived exertion (RPE) were assessed directly after each trial. Results indicated that CS for men was faster (0.98?±?0.24?m/s) compared to women (0.71?±?0.18?m/s). A lower GE was found in women compared to men. Push percentage, push angle and local RPE were different across the three speeds and between men and women. NE and FEF were not different between groups. Thus, even though their CS was lower, women demonstrated a higher locally perceived exertion than men. The results suggest sex differences in propulsion characteristics and GE. These insights may aid in optimising wheelchair propulsion through proper training and advice to prevent injuries and improve performance. This is relevant in stimulating an active lifestyle for those with a disability.  相似文献   

3.
A cinematographic analysis of the drive off the front foot (D) and the forward defensive stroke (FD) was undertaken to establish the kinematic and kinetic factors involved in playing these strokes against medium-fast bowling. Fourteen provincial cricket batsmen were filmed at 100 Hz while batting on a turf pitch with a specially instrumented bat. Results for the drive off the front foot revealed that the movement and stroke pattern were generally supportive of the coaching literature, with the forward defensive stroke forming the basis of the drive. Certain mechanical differences, although non-significant, were evident to facilitate the attacking nature of the front foot drive and included a higher backlift (FD = 0.65 m; D = 0.74 m), later commencement of the stride (FD = 0.64 s pre-impact; D = 0.58 s pre-impact) and downswing of the bat (FD = 0.38 s pre-impact; D = 0.36 s pre-impact), a shorter front foot stride (FD = 0.72 m; D = 0.68 m) with the front foot placement taking place later (FD = 0.14 s pre-impact; D = 0.06 s pre-impact), and the back foot dragging further forward at impact (FD = 0.05 m; D = 0.10 m). The front upper limb moved as a multi-segmental series of levers, which resulted in the drive showing significantly greater (P < 0.05) peak bat horizontal velocity at 0.02 s preimpact (FD = 3.53 ± 3.44 m . s -1 ; D = 11.8 ± 4.61 m . s -1 ) and 0.02 s post-impact (FD = 2.73 ± 2.88 m . s -1 ; D = 11.3 ± 4.21 m . s -1 ). The drive showed a significantly greater (P < 0.05) bat-ball closing horizontal velocity (FD = 24.2 ± 4.65 m . s-1; D = 32.3 ± 5.06 m . s -1 ) and post-impact ball horizontal velocity (FD = 6.85 5.12 m . s -1 ; D = 19.5 ± 2.13 m . s -1 ) than for the forward defensive stroke. The point of bat-ball contact showed nonsignificant differences, but occurred further behind the front ankle (FD = 0.09 ± 0.17 m; D = 0.20 ± 0.13 m), with the bat more vertical at impact (FD = 62.6 ± 6.53 ; D = 77.8 ± 7.05). Significant differences (P < 0.01) occurred between the grip forces of the top and bottom hands for the two strokes, with the principal kinetic finding that the top hand plays the dominant role during the execution of the drive with the bottom hand reinforcing it at impact. Similar grip force patterns for the two strokes occurred during the initial part of the stroke, with the drive recording significantly greater (P < 0.05) forces at 0.02 s pre-impact (top hand: FD = 129 ± 41.6 N; D = 199 ± 40.9 N; bottom hand: FD = 52.2 ± 16.9 N; D = 91.8 ± 41.1 N), at impact (top hand: FD = 124 ± 29.3 N; D = 158 ± 56.2 N; bottom hand: FD = 67.1 ± 21.5 N; D = 86.2 ± 58.2 N) and 0.02 s postimpact (top hand: FD = 111 ± 22.2 N; D = 126 ± 28.5 N; bottom hand: FD = 65.5 ± 26.9 N; D = 82.4 ± 28.6 N).  相似文献   

4.
A cinematographic analysis of the drive off the front foot (D) and the forward defensive stroke (FD) was undertaken to establish the kinematic and kinetic factors involved in playing these strokes against medium-fast bowling. Fourteen provincial cricket batsmen were filmed at 100 Hz while batting on a turf pitch with a specially instrumented bat. Results for the drive off the front foot revealed that the movement and stroke pattern were generally supportive of the coaching literature, with the forward defensive stroke forming the basis of the drive. Certain mechanical differences, although non-significant, were evident to facilitate the attacking nature of the front foot drive and included a higher backlift (FD = 0.65 m; D = 0.74 m), later commencement of the stride (FD = 0.64 s pre-impact; D = 0.58 s pre-impact) and downswing of the bat (FD = 0.38 s pre-impact; D = 0.36 s pre-impact), a shorter front foot stride (FD = 0.72 m; D = 0.68 m) with the front foot placement taking place later (FD = 0.14 s pre-impact; D = 0.06 s pre-impact), and the back foot dragging further forward at impact (FD = 0.05 m; D = 0.10 m). The front upper limb moved as a multi-segmental series of levers, which resulted in the drive showing significantly greater (P< 0.05) peak bat horizontal velocity at 0.02 s pre-impact (FD = 3.53 +/- 3.44 m s(-1); D = 11.8 +/- 4.61 m x s(-1)) and 0.02 s post-impact (FD = 2.73 +/- 2.88 m x s(-1); D = 11.3 +/- 4.21 m x s(-1)). The drive showed a significantly greater (P < 0.05) bat-ball closing horizontal velocity (FD = 24.2 +/- 4.65 m x s(-1); D = 32.3 +/- 5.06 m x s(-1)) and post-impact ball horizontal velocity (FD = 6.85 +/- 5.12 m x s(-1); D = 19.5 +/- 2.13 m x s(-1)) than for the forward defensive stroke. The point of bat-ball contact showed nonsignificant differences, but occurred further behind the front ankle (FD = 0.09 +/- 0.17 m; D = 0.20 +/- 0.13 m), with the bat more vertical at impact (FD = 62.6 +/- 6.53 degrees ; D = 77.8 +/- 7.05 degrees). Significant differences (P< 0.01) occurred between the grip forces of the top and bottom hands for the two strokes, with the principal kinetic finding that the top hand plays the dominant role during the execution of the drive with the bottom hand reinforcing it at impact. Similar grip force patterns for the two strokes occurred during the initial part of the stroke, with the drive recording significantly greater (P < 0.05) forces at 0.02 s pre-impact (top hand: FD = 129 +/- 41.6 N; D = 199 +/- 40.9 N; bottom hand: FD = 52.2 +/- 16.9 N; D = 91.8 +/- 41.1 N), at impact (top hand: FD = 124 +/- 29.3 N; D = 158 +/- 56.2 N; bottom hand: FD = 67.1 +/- 21.5 N; D = 86.2 +/- 58.2 N) and 0.02 s post-impact (top hand: FD = 111 +/- 22.2 N; D = 126 +/- 28.5 N; bottom hand: FD = 65.5 +/- 26.9 N; D = 82.4 +/- 28.6 N).  相似文献   

5.
Because youth athletes are smaller and weaker than their adult counterparts, smaller equipment and fields are often used in youth sports. Previous research has shown that youth baseball pitchers use similar motions to older pitchers, but generate lower kinetics and angular velocities at the shoulder and elbow. The purpose of this study was to determine potential biomechanical benefits for youth pitchers to use lighter baseballs. Thirty-four youth (11.1 ± 0.7 years) pitchers pitched both standard [5 ounce (142 g)] and lightweight [4 ounce(113 g)] baseballs in a laboratory setting. Kinematic and kinetic parameters were measured with a six-camera high-speed motion analysis system. Three repeated measures MANOVAs were used to compare (p > 0.05) position, velocity, and kinetic parameters between the standard and lightweight baseballs. Subjective data were also collected. Pitching the lightweight ball produced no difference in arm position, but greater shoulder, elbow, and ball velocities. With the lightweight ball, pitchers produced decreased kinetics.Post-hoc analysis of the kinetic data revealed significant decreases in elbow varus torque and shoulder internal rotation torque. The data suggest that playing with lightweight baseballs may reduce the risk of overuse injury in the youth pitcher and also help develop arm speed. However, before introducing lightweight baseballs into the youth game, the effect of lighter, faster pitched balls for the batters and fielders should also be considered.  相似文献   

6.
Understanding how loading affects power production in resistance training is a key step in identifying the most optimal way of training muscular power – an essential trait in most sporting movements. Twelve elite male sailors with extensive strength-training experience participated in a comparison of kinematics and kinetics from the upper body musculature, with upper body push (bench press) and pull (bench pull) movements performed across loads of 10–100% of one repetition maximum (1RM). 1RM strength and force were shown to be greater in the bench press, while velocity and power outputs were greater for the bench pull across the range of loads. While power output was at a similar level for the two movements at a low load (10% 1RM), significantly greater power outputs were observed for the bench pull in comparison to the bench press with increased load. Power output (P max) was maximized at higher relative loads for both mean and peak power in the bench pull (78.6 ± 5.7% and 70.4 ± 5.4% of 1RM) compared to the bench press (53.3 ± 1.7% and 49.7 ± 4.4% of 1RM). Findings can most likely be attributed to differences in muscle architecture, which may have training implications for these muscles.  相似文献   

7.
Non-circular chainrings theoretically enhance cycling performance by increasing effective chainring diameter and varying crank velocity, but research has failed to consistently reproduce the benefits in cycling trials. The aim of this study was (1) to investigate the effect of different chainring shapes on sagittal knee joint moment and sagittal lower limb joint powers and (2) to investigate whether alterations are affected by cadence and workload. Fourteen elite cyclists cycled in six conditions (70, 90 and 110 rpm, each at 180 and 300 W), for 2 min each, using three chainrings of different ovalities (1.0–1.215). Kinematic data and pedal forces were collected. For most conditions, only the chainring with the highest ovality (1.215) was characterised by smaller sagittal knee joint moments, smaller relative sagittal knee joint power contribution and larger relative sagittal hip joint power contribution, which suggests a change from maximising efficiency to maximising power production. Effect sizes increased with higher cadences, but not with higher workload. This study has application for athletes, clinicians and sports equipment industry as a non-circular chainring can change joint-specific power generation and decrease knee joint moment, but certain ovality seems to be necessary to provoke this effect.  相似文献   

8.
9.
The coronal and sagittal plane leg movements of 24 experienced male cyclists were assessed using video analysis while cycling on a Kingcycle windload simulator. The cyclists were grouped into those with a history of injury and an asymptomatic group on the basis of self-reported injury status. The ages, cycling experience, competition distances and competition speeds of the two groups were compared using Student's t-test. No significant differences (P < 0.05) were found for any of these variables. The maximum and minimum shank adduction, shank adduction velocities, knee flexion and ankle dorsiflexion values were also compared using Student's t-test. Significant differences were found at the point of maximum adduction (1.9 degrees; P = 0.019) and minimum dorsiflexion (4.9 degrees; P = 0.014). These differences indicated more dorsiflexion and greater abduction on the part of the symptomatic cyclists, supporting previous research that found that cyclists with a history of injury differ from those without a history of injury in the coronal plane leg movement patterns they adopt. Also, the most extreme medial position of the knee relative to the ankle occurred during knee extension. This supports the potential injury mechanism proposed by Francis (1986), which had previously only been examined using coronal plane kinematics.  相似文献   

10.
The coronal and sagittal plane leg movements of 24 experienced male cyclists were assessed using video analysis while cycling on a Kingcycle windload simulator. The cyclists were grouped into those with a history of injury and an asymptomatic group on the basis of self-reported injury status. The ages, cycling experience, competition distances and competition speeds of the two groups were compared using Student's t-test. No significant differences (P?<0.05) were found for any of these variables. The maximum and minimum shank adduction, shank adduction velocities, knee flexion and ankle dorsiflexion values were also compared using Student's t-test. Significant differences were found at the point of maximum adduction (1.9°; P?=?0.019) and minimum dorsiflexion (4.9°; P?=?0.014). These differences indicated more dorsiflexion and greater abduction on the part of the symptomatic cyclists, supporting previous research that found that cyclists with a history of injury differ from those without a history of injury in the coronal plane leg movement patterns they adopt. Also, the most extreme medial position of the knee relative to the ankle occurred during knee extension. This supports the potential injury mechanism proposed by Francis (1986), which had previously only been examined using coronal plane kinematics.  相似文献   

11.
网球底线反手切削球技术划分及运动学参数比较分析   总被引:1,自引:0,他引:1  
采用文献法、录像解析法、访谈法等研究方法,以国家女子网球运动员为研究对象,对底线反手切削球关键技术动作进行三维录像和解析.结果表明:不同高度的来球其引拍和挥拍的动作不同,依据其动作特点可分为切削、平削和压削三种技术.分析发现:三种切削球技术动作在转体引拍和挥拍切削时的肩髋转动角、拍面角、身体倾斜角有显著差异;三种技术的挥拍动作均是由转体、拍臂依次加速的鞭打动作.以此研究揭示底线反手切削球技术的本质特征,为进一步提高网球教学和训练提供理论参考.  相似文献   

12.
In Australian football (AF), handballing proficiently with both the preferred and non-preferred arm is important at elite levels; yet, little information is available for handballing on the non-preferred arm. This study compared preferred and non-preferred arm handballing techniques. Optotrak Certus (100 Hz) collected three-dimensional data for 19 elite AF players performing handballs with the preferred and non-preferred arms. Position data, range of motion (ROM), and linear and angular velocities were collected and compared between preferred and non-preferred arms using dependent t-tests. The preferred arm exhibited significantly greater forearm and humerus ROM and angular velocity and significantly greater shoulder angular velocity at ball contact compared to the non-preferred arm. In addition, the preferred arm produced a significantly greater range of lateral bend and maximum lower-trunk speed, maximum strike-side hip speed and hand speed at ball contact than the non-preferred arm. The non-preferred arm exhibited a significantly greater shoulder angle and lower- and upper-trunk orientation angle, but significantly lower support-elbow angle, trunk ROM, and trunk rotation velocity compared to the preferred arm. Reduced ROM and angular velocities found in non-preferred arm handballs indicates a reduction in the degrees of freedom and a less developed skill. Findings have implication for development of handballing on the non-preferred arm.  相似文献   

13.
Propulsion and bracing ground reaction force (GRF) in overhand throwing are integral in propagating joint reaction kinetics and ball velocity, yet how stride length effects drive (hind) and stride (lead) leg GRF profiles remain unknown. Using a randomised crossover design, 19 pitchers (15 collegiate and 4 high school) were assigned to throw 2 simulated 80-pitch games at ±25% of their desired stride length. An integrated motion capture system with two force plates and radar gun tracked each throw. Vertical and anterior–posterior GRF was normalised then impulse was derived. Paired t-tests identified whether differences between conditions were significant. Late in single leg support, peak propulsion GRF was statistically greater for the drive leg with increased stride. Stride leg peak vertical GRF in braking occurred before acceleration with longer strides, but near ball release with shorter strides. Greater posterior shear GRF involving both legs demonstrated increased braking with longer strides. Conversely, decreased drive leg propulsion reduced both legs’ braking effects with shorter strides. Results suggest an interconnection between normalised stride length and GRF application in propulsion and bracing. This work has shown stride length to be an important kinematic factor affecting the magnitude and timing of external forces acting upon the body.  相似文献   

14.
15.
全国部分高校针对学生中一些身体素质差,自觉锻炼意识又薄弱,从而造成体育课不及格的学生,采用了开设体育重修课这样的方式来组织体育差生进行有组织有计划的重修锻炼。本文通过调查确认开设体育重修课对提高学生的身体素质有明显的效果,但同时又强调指出学校开设体育重修课更为重要的宗旨应是培养学生具有自觉、强烈的健身意识和习惯,树立终身参与体育运动的观念。  相似文献   

16.
This study examined arm and leg coordination and propulsion during the flat breaststroke in nine elite male and eight elite female swimmers over three race paces (200?m, 100?m and 50?m). Coordination was expressed using four temporal gaps (T1, T2, T3, T4), which described the continuity between the propulsive phases of the limbs, as recorded on a video device (50 Hz). Glide duration was denoted T1, the time between the beginning of arm and leg recovery was denoted T2, the time between the end of arm and the leg recovery was denoted T3, and the time between 90° of flexion during arm recovery and 90° during leg recovery was denoted T4. Using these temporal gaps, four stroke phases (propulsion, glide, recovery and leg insweep) could be followed over a complete arm and leg stroke. The total duration of arm and leg propulsion was assessed by a new index of flat breaststroke propulsion (IFBP). Velocity, stroke rate and stroke length were also calculated for each pace. The elite swimmers showed short T2, T3 and T4; moreover, T1 decreased when the pace increased. Expertise in the flat breaststroke was thus characterized by synchronized arm and leg recoveries and increased continuity in the arm and leg propulsions with increasing velocity. Differences between the sexes in the spatio-temporal parameters were possibly due to anthropometric differences (the men were heavier, older and taller than the women) and different motor organization linked to arm and leg coordination (shorter T3, body glide and body recovery, and greater body propulsion and higher IFBP in the men). The men's propulsive actions showed greater continuity, particularly in the sprint. The best men adopted a superposition coordination and thus had the ability to overcome very great active drag. Temporal gap measurement and the IFBP are practical indicators of arm and leg coordination and propulsion that can be exploited by coaches and swimmers to increase the continuity between propulsive actions during the flat breaststroke.  相似文献   

17.
This study examined arm and leg coordination and propulsion during the flat breaststroke in nine elite male and eight elite female swimmers over three race paces (200 m, 100 m and 50 m). Coordination was expressed using four temporal gaps (T1, T2, T3, T4), which described the continuity between the propulsive phases of the limbs, as recorded on a video device (50 Hz). Glide duration was denoted T1, the time between the beginning of arm and leg recovery was denoted T2, the time between the end of arm and the leg recovery was denoted T3, and the time between 90 degrees of flexion during arm recovery and 90 degrees during leg recovery was denoted T4. Using these temporal gaps, four stroke phases (propulsion, glide, recovery and leg insweep) could be followed over a complete arm and leg stroke. The total duration of arm and leg propulsion was assessed by a new index of flat breaststroke propulsion (IFBP). Velocity, stroke rate and stroke length were also calculated for each pace. The elite swimmers showed short T2, T3 and T4; moreover, T1 decreased when the pace increased. Expertise in the flat breaststroke was thus characterized by synchronized arm and leg recoveries and increased continuity in the arm and leg propulsions with increasing velocity. Differences between the sexes in the spatio-temporal parameters were possibly due to anthropometric differences (the men were heavier, older and taller than the women) and different motor organization linked to arm and leg coordination (shorter T3, body glide and body recovery, and greater body propulsion and higher IFBP in the men). The men's propulsive actions showed greater continuity, particularly in the sprint. The best men adopted a superposition coordination and thus had the ability to overcome very great active drag. Temporal gap measurement and the IFBP are practical indicators of arm and leg coordination and propulsion that can be exploited by coaches and swimmers to increase the continuity between propulsive actions during the flat breaststroke.  相似文献   

18.
Abstract

Cerebral palsy is known to generally limit range of motion and force producing capability during movement. It also limits sprint performance, but the exact mechanisms underpinning this are not well known. One elite male T36 multiple-Paralympic sprint medallist (T36) and 16 well-trained able-bodied (AB) sprinters each performed 5–6 maximal sprints from starting blocks. Whole-body kinematics (250 Hz) in the block phase and first two steps, and synchronised external forces (1,000 Hz) in the first stance phase after block exit were combined to quantify lower limb joint kinetics. Sprint performance (normalised average horizontal external power in the first stance after block exit) was lower in T36 compared to AB. T36 had lower extensor range of motion and peak extensor angular velocity at all lower limb joints in the first stance after block exit. Positive work produced at the knee and hip joints in the first stance was lower in T36 than AB, and the ratio of positive:negative ankle work produced was lower in T36 than AB. These novel results directly demonstrate the manner in which cerebral palsy limits performance in a competition-specific sprint acceleration movement, thereby improving understanding of the factors that may limit performance in elite sprinters with cerebral palsy.  相似文献   

19.
20.
The forward skating start is a fundamental skill for male and female ice hockey players. However, performance differences by athlete’s sex cannot be fully explained by physiological variables; hence, other factors such as skating technique warrant examination. Therefore, the purpose of this study was to evaluate the body movement kinematics of ice hockey skating starts between elite male and female ice hockey participants. Male (n = 9) and female (n = 10) elite ice hockey players performed five forward skating start accelerations. An 18-camera motion capture system placed on the arena ice surface captured full-body kinematics during the first seven skating start steps within 15 meters. Males’ maximum skating speeds were greater than females. Skating technique sex differences were noted: in particular, females presented ~10° lower hip abduction throughout skating stance as well as ~10° greater knee extension at initial ice stance contact, conspicuously followed by a brief cessation in knee extension at the moment of ice contact, not evident in male skaters. Further study is warranted to explain why these skating technique differences exist in relation to factors such as differences in training, equipment, performance level, and anthropometrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号