首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分式运算经常涉及到通分 ,若能根据分式的结构特征 ,采取相应的通分方法和技巧 ,则不仅可驭繁为简、化难为易 ,而且可减少出错率 ,达到事半功倍之效。本文通过课本习题介绍分式通分的七种技巧。一、分解因式 ,约后通分例 1 .计算 :x2 2 xy y2x2 y xy2 - x2 - 2 xy y2x2 y- xy2 。解 :原式 =( x y) 2xy( x y) - ( x- y) 2xy( x- y)=x yxy - x- yxy=2 yxy=2x。二、通盘考虑 ,整体通分把题目中的多项式视为一个整体进行通分 ,比逐项通分计算量小、速度快。例 2 .计算 :x3x- 1- x2 - x- 1。解 :原式 =x3x- 1- ( x2 x 1)=x3 - ( x- 1) ( x2 x …  相似文献   

2.
分式的求值问题,涉及到分式的运算法则、约分、通分、乘法公式、因式分解等多个知识点.利用分式运算中的一些技巧,可以达到化繁为简、巧妙求解的目的. 一、整体代入法例1 已知1/x+1/y=5,求(2x-5xy+2y)/(x+2xy+y)的值. 解法1:因1/x+1/y=5,故xy≠0.  相似文献   

3.
对于异分母分式加减运算或求值问题,一般是利用最简公分母解决,具体做时要针对具体情况具体分析.以下列举四例.例1 已知x>0,y>0,Q1=x y/2,Q2 =2xy/x y.比较Q1、Q2的大小.解此题可直接作差. Q1-Q2=x y/2-2xy/x y =(x y)2/2(x y)-4xy/2(x y)=(x-y)2/2(x y)≥0,  相似文献   

4.
早在初中代数课上,就已经知道了两数和的平方公式 (x y)~2=x~2 2xy y~2(1)、这一公式的应用是极其广泛的。在这里,我们介绍它的部分应用。 一、推证公式问题 以下乘法公式 (x-y)~2=x~2-2xy y~2 (x y)(x-y)=x~2-y~2 (x y)~3=x~3 3x~2y 3xy~2 y~3 (x-y)~3=x~3-3x~2y 3xy~2-y~3 (x-y)(x~2 xy y~2)=x~3-y~3 (x y)(x~2-xy y~2)=X~3 y~3等都可运用公式(1)来推导 例1、求证:(x y)(x-y)=x~2=y~2 证:令a=(x y)/2,b=(x-y)/2, 则两数x、y的平方差,x~2-y~2=(a b)~2-(a-b)~2运用公式(1)有x~2-y~2=4ab据假设条件,得x~2-y~2=4(x y)/2·(x-y)/2,即x~2-y~2=(x y)(x-y) 例2、求证:(x-y)~3=x~3-3x~2y 3xy~2-y~3 证:将上式右端进行配方变换即得证 x~3-3x~2y 3xy~2-y~3 =x~3-2x~2y xy~2-x~2y 2xy~2-y~3 =x(x-y)~2-y(x-y)~2 =(x-y)~3 类似地,乘法公式都可用公式(1)来推导,此外,还可推证一些多项因式的乘法  相似文献   

5.
一类二元函数的条件最值,如能进行适当的齐次代换转化为分式函数,利用判别式法易于简捷巧妙地获解。例1 已知|3x-y|≥4,求S=2x~2-xy y~2的最小值,并求S取最小值时的x、y值。解:显然x,y不全为零,不妨设x≠0,令t=y/x。 u=S/(3x-y)~2=(2x~2-xy y~2)/(9x~2-6xy y~2)=(2-t t~2)/(9-6t t~2)化为(1-u)t~2 (6u-1)t (2-9u)=0其△=(6u-1)~2-4(1-u)(2-9u)=32u-7≥0,解得u≥7/32。  相似文献   

6.
一、选择题1.代数式a3b2,-21a2b3,3a4b3的公因式是().(A)a3b2(B)a2b3(C)a3b3(D)a2b22.把6a2(x-y)2-3a(x-y)3分解因式时,应提公因式().(A)3a(x-y)(B)3(x-y)2(C)3a(x-y)2(D)3a(x-y)33.下列变形中,属于因式分解的是().(A)mx+nx-n=(m+n)x-n(B)21x3y2=3x3·7y2(C)4x2-9=(2x+3)(2x-3)(D)(3x+2)(x-1)=3x2-x-24.下列四个式子中,正确的是().(A)x2-81=x+21x-41(B)-(x+y)2=(-x-y)2(C)4b2-4b-1=(2b-1)2(D)(x-y)3=-(y-x)35.如果x2+ax+9是一个完全平方式,那么a的值可能是().(A)3(B)18(C)±3(D)±66.不论x、y为何实数,x2-2xy+y2+100的值总是().(A)…  相似文献   

7.
解答某些与二次根式有关的求值问题时,利用两数的和与积作整体代换,能取得事半功倍的效果。例1.若x=3-23 2,y=3 23-2,则3x2-5xy 3y2=。(1996年四川省初中数学竞赛试题)解:化简,得x=5-26,y=5 26。∴x y=10,xy=1.原式=3x2-5xy 3y2-5xy  =3(x y)2-11xy  =289。例2.已知x<0为实数,且x-1x=5,则x7 12x4 xx8 9x4 1的值为(  )。(A)-9319; (B)-1993;(C)-328; (D)-75。(1993年哈尔滨市初中数学竞赛试题)解:设1x=y,那么x-y=5,yx=1。∵x<0,y<0,  ∴x y=-(x-y)2 4xy=-3。∴x2 y2=(x-y)2 2xy=7。∴x7 12x4 xx8 9x4 1=(x7 12x4 x)÷x4(x8 9x4 1…  相似文献   

8.
灵活运用代数式x~2 xy y~2及其三个变形式x~2 xy y~2=(x (y/2))~2 (3~(1/3)y)~2≥0,x~ xy y~2=x~2 y~2-2xycos120°,x~2 xy y~2=(x-y)~2 3xy≥3xy能使某些问题化生为熟、化难为易,现以高考、竞赛题为例说明如下。  相似文献   

9.
当题目中的未知数x、y具有对称关系时(即当x、y互换位置时,原式保持不变),如果令x y=a,xy=b,用换元法进行解答,就可以使解题过程更简单.下面通过几道例题,帮助同学们掌握这种解题技巧在分式求值中的妙用.例1若x-1x=1,则x3-1x3的值为().A.3B.4C.5D.6解:设1x=y,则x-y=1,xy=1,所以x3-1x3=x3-y3=(x-y)3 3xy(x-y)=13 3×1×1=4.故选B.例2若x2-5x 1=0,则x3 1x3=.解:由x2-5x 1=0,可知x≠0,故等式两边同除以x,得x 1x=5.设1x=y,则x y=5,xy=1,所以x3 1x3=x3 y3=(x y)3-3xy(x y)=53-3×1×5=110.例3已知ax a-x=2,那么a2x a-2x的值是().A.4B.3C.2D.6…  相似文献   

10.
代数式的变形是中学数学中一类常用的解题技巧,其方法灵活多变,我们在化简、求值、证明恒等式(不等式)和解方程(不等式)的过程中,常需将代数式变形,现结合实例,对代数式变形中一些常用方法和技巧作一介绍。一、变化已知条件或所求式例1 若1/x-1/y=3,则2x+3xy-2y/x-2y-y=___。解:由若1/x-1/y=3可知x-y=3xy,所以 2x+3xy-2y/x-2y-y =2(x-y)+3xy/(x-y)-2xy =2(-3xy)+3xy/-3xy-2xy=3/5。例2 如果a是x~2-3x+1=0的根,试  相似文献   

11.
当题目中的未知数具有对称关系时,应用基本对称式x+y=a,xy=b进行代换,可使解题过程简化。现以部分试题为例,介绍这种解题技巧在分式求值中的妙用。例1若x-1x=1,则x3-1x3=的值为()(A)3(B)4(C)5(D)6解:设1x=y,则x-y=1,xy=1。故x3-1x3=x3-y3=(x-y)3+3xy(x-y)=13+3×1=4。故选(B)。例2若x2-5x+1=0,则x3+1x3=解:显然由x2-5x+1=0可知:x≠0,故在等式两边同除以x,得x+1x=5,故设1x=y,则有x+y=5,xy=1。所以:x3+1x3=x3+y3=(x+y)3-3xy(x+y)=53-3×1×5=110。例3已知ax+a-x=2,那么a2x+a-2x的值是()(A)4(B)3(C)2(D)6解:由题设可设,ax=m,a-x=n,则有m+n=…  相似文献   

12.
不等式求最值,是高中的一个重点,也是一个难点.本文推出一个简单的不等式,其结构由双曲线方程而得出,故简称双曲线形不等式.定理:已知a,b≠0,且有x2/a2-y2/b2=1,則有a2-b2≤(x-y)2,当且仅当b2 x=a2 y时取等号.证明:(a2-b2)·(x2/a2-y2/b2)=x2+y2-(b2 x2/a2+a2 y2/b2)≤x2+y2-2bx/a·ay/b=x2+y2-2xy=(x-y)2,  相似文献   

13.
换元法是数学中的一个重要的思想方法。就是将代数式中的某一部分用一个新字母(元)来替换。此法用于多项式的因式分解,能使隐含的因式比较明朗地显示出来,从而为合理分组、运用公式等提供条件,使问题化难为易。例1分解因式(x2+xy+y2)2-4xy(x2+y2)。解:设x2+y2=a,xy=b,则原式=(a+b)2-4ab=(a-b)2=(x2-xy+y2)2。例2分解因式(x+y-2xy)(x+y-2)+(xy-1)2。解:设x+y=a,xy=b,则原式=(a-2b)(a-2)+(b-1)2=a2-2ab-2a+4b+b2-2b+1=(a-b)2-2(a-b)+1=(a-b-1)2=(x+y-xy-1)2=〔(1-y)(x-1)〕2=(y-1)2(x-1)2。例3分解因式(x2-4x+3)(x2-4x-12)+56。解:设x2-4x=y,…  相似文献   

14.
在分式运算中,常常要利用通分·若我们能细心观察、分析分式的结构特点,结合一定的通分技巧,往往可使运算简捷、准确·取得事半功倍的良好效果·一、整体处理后通分例1计算aa-31-a2-a-1·解:原式=aa-31-(a2+a+1)=a3-(a-a1)-(a12+a+1)=a3-a(a-31-1)=a-11·二、化积约分后通分例2计算x+2x3-3x-10-x2+x3-x2-10·解:原式=(x-5x)+(2x+2)-(x+5x)-(2x-2)=x1-5-x+15=10x2-25·三、分组结合后通分例3计算x-12+x2+1-x-21-x+12·解:原式=(x1-2-x1+2)+(x2+1-x-21)=4x2-4-x24-1=4(x2-1)-4(x2-4)(x2-4)(x2-1)=12x4-5x2+4·四、拆项相消后通分例4计算(x-11)…  相似文献   

15.
因式分解是初中数学的重要内容之一。因式分解题目千变万化,方法灵活多样,现举几例供同学们参考。例1分解因式(x2-2xy+y2)+(-2x+2y)+1.分析:若此题展开,这太复杂了。通过观察题目特点可将原式变形为(x-y)2-2(x-y)+1这样就易于分解了。解:原式=(x-y)2-2(x-y)+1=[(x-y)-1]2=(x-y-1)2.例2分解因式(x+1)(x+2)+41.分析:此题既没有公因式,又没有公式直接可用。可以先用整式乘法,重新整理然后分解。解:原式=x2+3x+2+41=x2+3x+49=(x+23)2.例3分解因式32004-32003.分析:此题从表面上看无法解,但通过观察,可逆用同底数幂的乘法法则,将32004化为32003×…  相似文献   

16.
在分式的加减运算中,经常要进行通分,通分时,若能根据题目的结构特征,灵活运用解题技巧,则能化繁为简,从而提高解题速度.下面通过举例向同学们介绍通分的几种技巧,供参考. 一、约分后通分例1计算x3-x2+x/x3+1-x3+x2+x/x3-1 解:原式=x(x2-x+1)/(x+1)(x2-x+1)  相似文献   

17.
一、直接法例1求函数y=1/(2+x2)的值域. 解∵x2的最小值为0, ∴y的最大值为1/2. 又∵当x无限增大时,y接近0,但总是大于0, ∴函数的值域为{y|0相似文献   

18.
有关证明条件等式的代数题,是一类综合性比较强的题目,如果能让学生掌握其各种不同的证明方法,对于培养他们的逻辑思维能力和熟练的技能技巧都是大有益处的。下面介绍几种证明条件等式的常用方法。一、将已知条件直接代入欲证等式例1 已知:x=(a-b)/(a b),y=(b-c)/(b c), z=(c-a)/(c a) 求证:(1 x)(1 y)(1 z) =(1-x)(1-y)(1-z) 证明:∵(1 x)(1 y)(1 z) =(1 (a-b)/(a b))(1 (b-c)/(b c))(1 (c-a)/(c a)) =2a/(a b)·2b/(b c)·2c/(c a) (1-x)(1-y)(1-z) =(1-(a-b)/(a b))(1-(b-c)/(b c))(1-(c-a)/(c a)) =2b/(a b)·2c/(b c)·2a/(c a) ∴ (1 x)(1 y)(1 z)=(1-x)(1-y)(1-z) 二、通过已知条件之间的相互变换,得出求证式。例2.设x=by cz,y=cz ax,z=ax by 试证:(a 1)x=(b 1)y=(c 1)z  相似文献   

19.
对于任意两个实数x和y,总有:x=x+y2+x-y2,y=x+y2-x-y2.若令a=x+y2,b=x-y2.则有x=a+b,y=a-b.这种代换称之为和差代换.下面谈谈这种代换在求值中的应用.一、求分式值例1已知a2+b2=6ab且a>b>0,则a+ba-b=.(2001年北京市初二数学竞赛复赛题)解设a=x+y,b=x-y,同时代入a2+b2=6ab中,得(x+y)2+(x-y)2=6(x+y)(x-y),化简整理,得x2=2y2,而a>b>0,所以x>y>0,故x2y2=2,xy=2.又知a+b=2x,a-b=2y,∴a+ba-b=2x2y=xy=2.二、求根式值例2计算14+65-14-65的值是()(A)1(B)5(C)25(D)5(2000年全国数学联赛题)解设14+65=a+b,①14-65=a-b.②①×②,得a2-b2=4.③①2+②2…  相似文献   

20.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号