首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Overuse injuries, resulting from repetitive subacute impact loading, are a problem in high-performance sports. Monitoring of impact loading may aid in the prevention of these injuries. The current study aimed to establish the intra-day and inter-day reliability of a tri-axial accelerometer to assess impact loading during jumping and landing tasks. Twelve participants wore an accelerometer on their upper and lower back. They performed a continuous hopping task as well as drop landings and rebound jumps from three drop heights (37.5, 57.5 and 77.5 cm), peak resultant acceleration (PRA) was calculated for all tasks. The tasks were performed twice, one week apart at the same time of day. The difference in the mean, intra-class correlation coefficient, coefficient of variation and Cohen’s effect size were calculated as measures of reliability. PRA showed good intra-day reliability for the hopping task. Inter-day reliability of the PRA was moderate to good across all tasks. Reliability of PRA was slightly higher when accelerations were recorded on the lower back compared to the upper back. To assess impact loading, during continuous hopping, drop landings and rebound jumps, PRA recorded at both the upper and lower back appears to be a reliable measure.  相似文献   

2.
BackgroundThe forefoot running footfall pattern has been suggested to reduce the risk of developing running related overuse injuries due to a reduction of impact related variables compared with the rearfoot running footfall pattern. However, only time-domain impact variables have been compared between footfall patterns. The frequency content of the impact shock and the degree to which it is attenuated may be of greater importance for injury risk and prevention than time-domain variables. Therefore, the purpose of this study was to determine the differences in head and tibial acceleration signal power and shock attenuation between rearfoot and forefoot running.MethodsNineteen habitual rearfoot runners and 19 habitual forefoot runners ran on a treadmill at 3.5 m/s using their preferred footfall patterns while tibial and head acceleration data were collected. The magnitude of the first and second head acceleration peaks, and peak positive tibial acceleration were calculated. The power spectral density of each signal was calculated to transform the head and tibial accelerations in the frequency domain. Shock attenuation was calculated by a transfer function of the head signal relative to the tibia.ResultsPeak positive tibial acceleration and signal power in the lower and higher ranges were significantly greater during rearfoot than forefoot running (p < 0.05). The first and second head acceleration peaks and head signal power were not statistically different between patterns (p > 0.05). Rearfoot running resulted in significantly greater shock attenuation for the lower and higher frequency ranges as a result of greater tibial acceleration (p < 0.05).ConclusionThe difference in impact shock frequency content between footfall patterns suggests that the primary mechanisms for attenuation may differ. The relationship between shock attenuation mechanisms and injury is not clear but given the differences in impact frequency content, neither footfall pattern may be more beneficial for injury, rather the type of injury sustained may vary with footfall pattern preference.  相似文献   

3.
Tibial accelerations have been associated with a number of running injuries. However, studies attaching the tibial accelerometer on the proximal section are as numerous as those attaching the accelerometer on the distal section. This study aimed to investigate whether accelerometer location influences acceleration parameters commonly reported in running literature. To fulfil this purpose, 30 athletes ran at 2.22, 2.78 and 3.33 m · s–1 with three accelerometers attached with double-sided tape and tightened to the participants’ tolerance on the forehead, the proximal section of the tibia and the distal section of the tibia. Time-domain (peak acceleration, shock attenuation) and frequency-domain parameters (peak frequency, peak power, signal magnitude and shock attenuation in both the low and high frequency ranges) were calculated for each of the tibial locations. The distal accelerometer registered greater tibial acceleration peak and shock attenuation compared to the proximal accelerometer. With respect to the frequency-domain analysis, the distal accelerometer provided greater values of all the low-frequency parameters, whereas no difference was observed for the high-frequency parameters. These findings suggest that the location of the tibial accelerometer does influence the acceleration signal parameters, and thus, researchers should carefully consider the location they choose to place the accelerometer so that equivalent comparisons across studies can be made.  相似文献   

4.
Usage of accelerometers within player tracking devices in sport to quantify load, vertical ground reaction force (vGRF) or energy expenditure is contrary to placement guidelines. This study aimed to determine whether trunk-mounted accelerometers were a valid and reliable method to estimate thoracic segment or centre of gravity (COG) acceleration or vGRF, and the whether the elasticised harness contributes to the overestimation of acceleration. Ten male amateur rugby players performed five linear running tasks per lower limb at three speeds, twice, each with a different player tracking unit. Three-dimensional data were recorded and triaxial accelerometers were attached lateral to the device on the harness and skin and both shanks. Accelerometers demonstrated poor reliability (ICC:0.0–0.67), high variability (CV%:14–33%) and change in mean (41–160%), and were not valid to estimate vertical acceleration of the COG and thoracic segment nor vGRF. Caution is advised when utilising trunk-mounted triaxial accelerometer data as it is not a valid or reliable means to estimate peak vertical acceleration for its thoracic location nor whole-body COG acceleration or vGRF during running. To improve player tracking instrument validity and reliability, a new attachment method and/or harness material(s), that reduce or eliminate extraneous acceleration during running, are urgently required.  相似文献   

5.
The effects of treadmill running on impact acceleration were examined together with the interaction between running surface and runner's fatigue state. Twenty recreational runners (11 men and 9 women) ran overground and on a treadmill (at 4.0 m/s) before and after a fatigue protocol consisting of a 30-minute run at 85% of individual maximal aerobic speed. Impact accelerations were analysed using two lightweight capacitive uniaxial accelerometers. A two-way repeated-measure analysis of variance showed that, in the pre-fatigue condition, the treadmill running decreased head and tibial peak impact accelerations and impact rates (the rate of change of acceleration), but no significant difference was observed between the two surfaces in shock attenuation. There was no significant difference in acceleration parameters between the two surfaces in the post-fatigue condition. There was a significant interaction between surface (treadmill and overground) and fatigue state (pre-fatigue and post-fatigue). In particular, fatigue when running overground decreased impact acceleration severity, but it had no such effect when running on the treadmill. The effects of treadmill running and the interaction need to be taken into account when interpreting the results of studies that use a treadmill in their experimental protocols, and when prescribing physical exercise.  相似文献   

6.
Runners tend to shift from a rearfoot to a forefoot strike pattern when running barefoot. However, it is unclear how the first attempts at running barefoot affect habitually rearfoot shod runners. Due to the inconsistency of their recently adopted barefoot technique, a number of new barefoot-related running injuries are emerging among novice barefoot runners. The aim of this study was therefore to analyse the influence of three running conditions (natural barefoot [BF], barefoot with a forced rearfoot strike [BRS], and shod [SH]) on muscle activity and impact accelerations in habitually rearfoot shod runners. Twenty-two participants ran at 60% of their maximal aerobic speed while foot strike, tibial and head impact accelerations, and tibialis anterior (TA), peroneus longus (PL), gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) muscle activity were registered. Only 68% of the runners adopted a non-rearfoot strike pattern during BF. Running BF led to a reduction of TA activity as well as to an increase of GL and GM activity compared to BRS and SH. Furthermore, BRS increased tibial peak acceleration, tibial magnitude and tibial acceleration rate compared to SH and BF. In conclusion, 32% of our runners showed a rearfoot strike pattern at the first attempts at running barefoot, which corresponds to a running style (BRS) that led to increased muscle activation and impact accelerations and thereby to a potentially higher risk of injury compared to running shod.  相似文献   

7.
Abstract

The aim was to assess the technical variability of a new wrist-worn accelerometer under controlled conditions with a shaker device and during normal daily physical activities (PAs). In the first experiment, 10 wrist-worn accelerometers (Vivago® Wellness, Paris, France) were attached to the shaker device. Variability was tested at five shaking frequencies (1.1, 2.1, 3.1, 4.1, and 10 Hz) for 10 min at each frequency. In the second experiment, 21 participants wore wrist-worn accelerometers and performed six consecutive 10-min periods of activity at increasing levels of intensity from sedentary to vigorous. Results from the first experiment show a modest inter- and intra-instrument reliability at low frequencies and that reliability improved as frequency increased. The inter-instrument coefficient of variation (CV) was 2.6–18.3%. The intra-instrument CV was 4.1–23.2%. Variability was similar in the second experiment with a CV inversely related to PA intensity. The inter- and intra-instrument CV varied from 24.2% and 19.9% for sedentary activities to 3.7% and 4.3% for vigorous PA, respectively. Results suggest that reliability was higher at high intensities, corresponding to moderate and vigorous PA, intensities generally recommended for public health purposes.  相似文献   

8.
LivePod LP2检测人体运动中能量消耗水平的信、效度检验   总被引:2,自引:1,他引:1  
加速度传感器以其轻便、客观、精确等特点,在人体体力活动测量与评价中被广泛使用。LivePod LP2是一款国产新型加速度传感器,它基于3轴加速度MEMS传感器技术,采用人体动作智能模糊识别模型和个性化能耗模型测量人体运动中的能量消耗。对LivePodLP2在测量人体运动能量消耗的信度和效度水平进行了验证。26名受试者在4个不同部位佩戴LivePod LP2,在3种速度下(4km/h、6km/h、8km/h)运动。通过计算ICC,发现其值处于0.978~0.997;采用相关分析、配对样本t检验以及Bland-Altman分析法等方法对仪器和MAXII测量数据分析表明:LivePod LP2佩戴于右侧臀部上方,在慢跑速度水平下效度水平最高。LivePod LP2可以用于记录体力活动能量消耗,在日常应用中,用户可以选择将LivePod LP2固定于腰部来监测运动能量消耗情况。  相似文献   

9.
The purpose of this study was to determine the reliability of the Actigraph GT1M (Pensacola, FL, USA) accelerometer activity count and step functions. Fifty GT1M accelerometers were initialized to collect simultaneous acceleration counts and steps data using 15-sec epochs. All reliability testing was completed using a mechanical shaker plate to perform six different test conditions in Experiment 1 and 18 test conditions in Experiment 2. The overall intra- and inter-instrument reliability of the GT1M was CVintra = 2.9% and CVinter = 3.5% for counts and CVintra = 1.1% and CVinter = 1.2% for steps. No batch effects were evident in the 50 GT1Ms. The Actigraph GT1M accelerometer demonstrated good reliability for measuring both counts and steps. However, the ability of the GT1M to consistently detect acceleration at a given acceleration and frequency condition varied widely. Future studies clarifying the filtering limitations and the threshold necessary to detect the occurrence of movement are warranted.  相似文献   

10.
The biomechanical evaluation of elite athletes often requires the use of sophisticated laboratory-based equipment that is restrictive, cumbersome, and often unsuitable for use in a training and competition environment. Small, low-mass unobtrusive centre-of-mass triaxial accelerometers can be used to collect data but may not reveal all the information of interest. This validation of centre-of-mass triaxial accelerometry uses previously reported synchronously collected foot-contact information from in-shoe pressure sensors. A qualitative assessment of the system output indicates that the centre-of-mass acceleration provides valuable insight into the use of accelerometers for investigating the biomechanics of, in this case, middle distance runners.  相似文献   

11.
The purpose of this study was to classify runners in sex-specific groups as either competitive or recreational based on center of mass (CoM) accelerations. Forty-one runners participated in the study (25 male and 16 female), and were labeled as competitive or recreational based on age, sex, and race performance. Three-dimensional acceleration data were collected during a 5-minute treadmill run, and 24 features were extracted. Support vector machine classification models were used to examine the utility of the features in discriminating between competitive and recreational runners within each sex-specific subgroup. Competitive and recreational runners could be classified with 82.63 % and 80.4 % in the male and female models, respectively. Dominant features in both models were related to regularity and variability, with competitive runners exhibiting more consistent running gait patterns, but the specific features were slightly different in each sex-specific model. Therefore, it is important to separate runners into sex-specific competitive and recreational subgroups for future running biomechanical studies. In conclusion, we have demonstrated the ability to analyze running biomechanics in competitive and recreational runners using only CoM acceleration patterns. A runner, clinician, or coach may use this information to monitor how running patterns change as a result of training.  相似文献   

12.
Alterations in joint mechanics have been associated with common overuse injuries. An increase in running cadence in healthy runners has been shown to improve several parameters that have been tied to injury, but the reorganisation of motion that produces these changes has not been examined. The purpose of this study was to determine if runners change their segment coordination and coordination variability with an acute increase in cadence. Data were collected as ten uninjured runners ran overground at their preferred cadence as well as a cadence 10% higher than preferred. Segment coordination and coordination variability were calculated for select thigh–shank and shank–foot couples and selected knee mechanics were also calculated. Paired t-tests were used to examine differences between the preferred and increased cadence conditions. With increased cadence, there was a decrease in peak knee flexion and a later occurrence of peak knee flexion and internal rotation and shank internal rotation. Segment coordination was altered with most changes occurring in mid-late stance. Coordination variability decreased with an increase in cadence across all couples and phases of gait. These results suggest examination of coordination and its variability could give insight into the risk of intervention-induced injury.  相似文献   

13.
The purpose of this study was to examine the differences in coordination variability in running gait between trained runners and non-runners using continuous relative phase (CRP) analysis. Lower extremity kinematic data were collected for 22 participants during the stance phase. The participants were assigned to either a runner or non-runner group based on running volume training. Segment coordination and coordination variability were calculated for selected hip–knee and knee–ankle couplings. Independent t-tests and magnitude-based inferences were used to compare the 2 groups. There were limited differences in the CRP and its variability among runners and non-runner groups. The runners group achieved moderately lower coordination compared with non-runners group in the phase angle for hip abduction/adduction and knee flexion/extension. The runners tended to show moderately lower coordination variability in the phase angle for knee flexion/extension and subtalar inversion/eversion in comparison to non-runners group. These results suggested that levels of experience as estimated from weekly training volume had little influence on coordination and its variability.  相似文献   

14.
The purpose of this study was to investigate the test-retest reliability and concurrent validity of the Flemish Physical Activity Computerized Questionnaire (FPACQ) in employed/unemployed and retired people. The FPACQ was developed to assess detailed information on several dimensions of physical activity and sedentary behavior over a usual week. A triaxial accelerometer, the RT3 Triaxial Research Tracker (RT3), in combination with a written 7-day activity record, was used as the objective criterion measure. In employed/unemployed people, 2-week test-retest reliability for several activity variables calculated from the FPACQ was good to excellent with intraclass correlations (ICCs) ranging from .67 to .99. In retired people ICCs were lower but, except for time spent eating, still fair to excellent, ranging from .57 to .96. Except for time spent in leisure time activities for men and the average energy expenditure related to sports participation in women, correlations between the RT3 and the FPACQ generally supported the relative validity of the FPACQ for employed/unemployed people (r ranging from .37 to .88). Values for retired people were somewhat lower (r ranging from .15 to .85), but most variables still reached at least moderate correlations. Concerning absolute validity, the FPACQ generally overestimated physical activity and underestimated sedentary behavior compared to the RT3. From this study, it can be concluded that the FPACQ is a reliable and reasonably valid questionnaire for assessing different dimensions of physical activity and sedentary behavior.  相似文献   

15.
The purpose of this study was to investigate the test-retest reliability and concurrent validity of the Flemish Physical Activity Computerized Questionnaire (FPACQ) in employed/unemployed and retired people. The FPACQ was developed to assess detailed information on several dimensions of physical activity and sedentary behavior over a usual week. A triaxial accelerometer, the RT3 Triaxial Research Tracker (RT3), in combination with a written 7-day activity record, was used as the objective criterion measure. In employed/unemployed people, 2-week test-retest reliability for several activity variables calculated from the FPACQ was good to excellent with intraclass correlations (ICCs) ranging from .67 to .99. In retired people ICCs were lower but, except for time spent eating, still fair to excellent, ranging from .57 to .96. Except for time spent in leisure time activities for men and the average energy expenditure related to sports participation in women, correlations between the RT3 and the FPACQ generally supported the relative validity of the FPACQ for employed/unemployed people (r ranging from .37 to .88). Values for retired people were somewhat lower (r ranging from .15 to .85), but most variables still reached at least moderate correlations. Concerning absolute validity, the FPACQ generally overestimated physical activity and underestimated sedentary behavior compared to the RT3. From this study, it can be concluded that the FPACQ is a reliable and reasonably valid questionnaire for assessing different dimensions of physical activity and sedentary behavior.  相似文献   

16.
This study investigated differences in lower-limb coordination and coordination variability between experienced and novice runners during a prolonged run. Thirty-four participants were categorised as either experienced (n = 17) or novice runners (n = 17). All participants performed a 31-min treadmill run at their individual anaerobic threshold speed, and lower-limb kinematic data were acquired in the sagittal plane at the beginning, middle, and end of the run. Lower-limb coordination and variability during the stance phase were quantified using a vector coding technique for hip-knee, knee-ankle, pelvis-thigh, thigh-shank, and shank-foot couplings. Repeated-measure analysis of covariance revealed that running experience and time had significant interactions on the coordination patterns for hip-knee and pelvis-thigh couplings. During the midstance, experienced runners exhibited a higher percentage of in-phase motion for pelvis-thigh and knee-ankle couplings while novice runners displayed a higher percentage of distal motion for pelvis-thigh coupling and anti-phase motion for hip-knee coupling. Experienced runners displayed more variability in hip-knee and shank-foot couplings, and novice runners had more variability in hip, knee, and thigh motion. Experienced and novice runners adapted to progressive fatigue through different lower-limb coordination patterns. Throughout the prolonged run, experienced runners demonstrated greater coordination variability and novice runners displayed greater joint and segment variability.  相似文献   

17.
This study assessed the validity of a tri-axial accelerometer worn on the upper body to estimate peak forces during running and change-of-direction tasks. Seventeen participants completed four different running and change-of-direction tasks (0°, 45°, 90°, and 180°; five trials per condition). Peak crania-caudal and resultant acceleration was converted to force and compared against peak force plate ground reaction force (GRF) in two formats (raw and smoothed). The resultant smoothed (10 Hz) and crania-caudal raw (except 180°) accelerometer values were not significantly different to resultant and vertical GRF for all running and change-of-direction tasks, respectively. Resultant accelerometer measures showed no to strong significant correlations (r = 0.00–0.76) and moderate to large measurement errors (coefficient of variation [CV] = 11.7–23.9%). Crania-caudal accelerometer measures showed small to moderate correlations (r = ? 0.26 to 0.39) and moderate to large measurement errors (CV = 15.0–20.6%). Accelerometers, within integrated micro-technology tracking devices and worn on the upper body, can provide a relative measure of peak impact force experienced during running and two change-of-direction tasks (45° and 90°) provided that resultant smoothed values are used.  相似文献   

18.
The purpose of this study was to investigate the influence of midsole durometer on mechanical and hematological responses during a prolonged downhill run. Twenty-four men completed a 30-min downhill run (-12% grade) wearing either soft, medium, or hard midsole shoes. Data describing mean peak tibial acceleration (PTA), stride frequency, plasma free hemoglobin, hemoglobin concentration, hematocrit, and creatine kinase (CK) were collected. While there were no significant differences in PTA among midsole durometer shoes, PTA increased by 20% after the first 5 min of the run over all other time intervals during the run (p < .05). Hemolysis showed a 50.2% increase from prerun to postrun values (p <.05). CK increased from the prerun state to 24 hr after the run (p <. 05). Downhill running, irrespective of midsole durometer, showed increased levels of legshock, hemolysis, and muscle damage over values that are present in the literature for a level running protocol.  相似文献   

19.
ABSTRACT

Purpose: To compare children’s energy expenditure (EE) levels during object projection skill performance (OPSP; e.g., kicking, throwing, striking) as assessed by hip- and wrist-worn accelerometers. Method: Forty-two children (female n = 20, Mage = 8.1 ± 0.8 years) performed three, nine-minute sessions of kicking, over-arm throwing, and striking at performance intervals of 6, 12, and 30 seconds. EE was estimated using indirect calorimetry (COSMED k4b2) and accelerometers (ActiGraph GT3X+) worn on three different locations (hip, dominant-wrist, and non-dominant-wrist) using four commonly used cut-points. Bland-Altman plots were used to analyze the agreement in EE estimations between accelerometry and indirect calorimetry (METS). Chi-square goodness of fit tests were used to examine the agreement between accelerometry and indirect calorimetry. Results: Hip- and wrist-worn accelerometers underestimated EE, compared to indirect calorimetry, during all performance conditions. Skill practice at a rate of two trials per minute resulted in the equivalent of moderate PA and five trials per minute resulted in vigorous PA (as measured by indirect calorimetry), yet was only categorized as light and/or moderate activity by all measured forms of accelerometry. Conclusion: This is one of the first studies to evaluate the ability of hip- and wrist-worn accelerometers to predict PA intensity levels during OPSP in children. These data may significantly impact PA intervention measurement strategies by revealing the lack of validity in accelerometers to accurately predict PA levels during OPSP in children.  相似文献   

20.
Abstract

The purpose of the present study was to relate 3D acceleration patterns of the lower and upper trunk during running to running gait cycle, assess the validity of stride duration estimated from acceleration patterns, investigate speed-dependent changes in acceleration, and examine the test–retest reliability of these parameters. Thirteen healthy young men performed two running trials each on a treadmill and on land at three speeds (slow, preferred, and fast). The 3D accelerations were measured at the L3 spinous process (lower trunk) and the ensiform process (upper trunk) and synchronised with digital video data. The amplitude and root mean square of acceleration and stride duration were calculated and then analysed by three-way analysis of variance to test effects of running conditions, device location, and running speed. Bland-Altman analysis was used to evaluate the test–retest reliability. Marked changes in acceleration were observed in relation to foot strike during running. Stride durations calculated from the vertical accelerations were nearly equal to those estimated from video data. There were significant speed effects on all parameters, and the low test–retest reliability was confirmed in the anterior–posterior acceleration during treadmill running and the anterior–posterior acceleration at slow speed during treadmill and overground running.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号