首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
戴志刚 《金秋科苑》2009,(22):146-146,148
《嘉莉妹妹》是美国作家西奥多.德莱塞精心刻画的一个美国梦的追寻者形象。本文结合存在主义观点解读《嘉莉妹妹》,分析主人公嘉莉妹妹在追梦过程中对人生本质的思考与探索,指出在"上流社会"背后隐藏的虚伪性。在美国历史上最动荡不安的时期,西奥多.德莱塞以他独特的视角描绘了当时的美国社会。  相似文献   

2.
戴志刚 《今日科苑》2009,(22):146-146,148
《嘉莉妹妹》是美国作家西奥多.德莱塞精心刻画的一个美国梦的追寻者形象。本文结合存在主义观点解读《嘉莉妹妹》,分析主人公嘉莉妹妹在追梦过程中对人生本质的思考与探索,指出在"上流社会"背后隐藏的虚伪性。在美国历史上最动荡不安的时期,西奥多.德莱塞以他独特的视角描绘了当时的美国社会。  相似文献   

3.
侯庆华 《科教文汇》2013,(22):97-97,99
《嘉莉妹妹》是美国著名小说家西奥多·德莱塞的第一部作品,也是美国自然主义文学中的代表作。本文将以小说《嘉莉妹妹》为研究对象来分析自然主义在小说中的体现,旨在从美国梦与现代女性两个全新的角度探讨《嘉莉妹妹》中的自然主义。  相似文献   

4.
邱竞楠 《今日科苑》2007,(22):211-211
"美国梦":是美国文学的独特情节,这个起源于移民、拓荒时代的"美国梦"情节深潜于美国人意识深处。然而踏入20世纪"天真的时代"结束了。新世纪的美国作家们不再沉迷于美国成功的"神话",转而开始对"美国梦"进行全面的反省和批判。尤其在经受了两次世界大战和第一次资本主义危机之后,各种矛盾不断激化,社会问题层出不穷。"美国梦"的光彩一层层退去,最终消失。这一时期的大量文学作品紧扣这一主题开展创作。本文将其中的经典之作德莱塞的《嘉丽妹妹》海明威的《太阳照样升起》进行了介绍和分析。  相似文献   

5.
保卫     
父亲的老年痴呆症更严重了. 周末去看望父母,还没有进家门,就听见妹妹的声音,像和谁在吵架.进了家一看,妹妹房间里,衣服被扔了一地.父亲和妹妹正争执不下,父亲说自己的衣柜小非要占用妹妹房间里的衣柜.妹妹急得要哭.母亲则拉着父亲,不住地哄着他.  相似文献   

6.
Gentiana was originally proposed by Tournefort in 1700. Linnaeus adopted this generic name in his “Genera Plantarum” published in 1737. He divided the genus into seven groups on the basis of different shapes of corolla and forms of floral appendages. In his “Species Plantarum” he reorganized them into three artificial ones.  Forty years later, Moench established a new genus, Gentianella under which he described G. tetrandra as the type of his new genus.  In the view of identity of Gentianella tetrandra with Gentiana campestris L., it is evident that Gentianella represents only some plants formerly included in Gentiana at Linnaeus time.  In 1796, Froelich’s monograph on Gentiana appeared.  In his work four sections were represented and one of them was Crossopetalum.  In 1845, Grisebach also published a monograph of  Gentianaceae and recorded fifteen sections of which Amarella and Imaicola are two of his seven proposed ones. In 1888, Huxley studied the floral structure of Gentianaceae  in relation with pollination mechanism and, accordingly, divided the family into two  main groups, one with epipetalous glands, the other with glands at the base of the ovary.  In each group, four types of flowers were found.  He concluded that Gentiana was a  complex genus on account of presence of four different types of flowers in this group,  and suggested that many species of the genus should be separated out to form some smaller  generic categories.  Six years after, Kusnezow in his monograph divided Gentiana into  two subgenera Eugentiana and Gentianella.  In his system, subgenus Eugentiana consists  of ten sections and the Gentianella, seven.  He contributed much to the systematic  treatment of Eugnetiana but little to that of Gentianella.  He maintained the genus  Gentiana in a broad sense.  With increased knowledge of this group in the last thirty years, a number of botanists were able to make a clearer delimitation of true Gentiana  and its allies and treated them in more natural way.  Moench’s genus Gentianella was  rerised.  In 1936, H. Smith separated Megacodon from Gentianella as a genus.  In the  present paper, the writer suggests a generic name Gentianopsis for the section Crossopetalum in the same Genus. This new genus is characterized by (1) its large and somewhat flattened ellipsoidal   flower bud, (2) two dissimilar pairs of calyx lobes which are distichously imbricate in  aestivation, (3) four triangular, ciflated intracalyx membranes at the base of and  alternate with the calyx lobes, (4) distinct gynophore and (5) enlarged stigma. While  in typical Gentianella represented by section Amarella, the flower buds are small and terete, a laciniate corona is usually present, and the calyx-lobes are leafy, lanceolate, imbricate, and not provided with intracalyx membrane.       Besides the morphological characters mentioned above, the anatomical structure of  the floral parts is also a significant generic criterion.  In Gentianopsis, eight vascular  bundles are present in calyx, representing four dorsals and four fused ventrals.  In each  corolla-lobe there are five bundles.  In the body of ovary six bundles are present.  The ovule bearing surface is extensive covering nearly to entire surface of the ovary wall with  the exception of a narrow longitudinal zone along the dorsal bundle.  In Gentianella, calyx bundles are three in each lobe, without fusion of the ventrals.  In each corolla- lobe, the bundles are three instead of five as in Gentianopsis but the lateral ones branch once dichotomously after entering the base of corolla. In the body of ovary only four main bundles are present due to the fusion of smaller ventral ones.  The placentation is confined to the region of the ventral bundles.        Phylogenetically Gentianopsis and Gentianella may be regarded as closely reIated and may represent branches of a common line with Gentianopsis standing at a lower level, Gentianella being more advanced. In Gentianella the number of bundles in the corolla segments and ovary wall are reduced by partial or complete fusion and the distribution of ovules is confined only to the region of the ventral bundles.  However, in the calyx of Gentianopsis there is fusion of ventral bundles, whereas the correspound- ing bundles in the Gentianella remain separate.  The Gentianopsis-Gentianella line on the one hand and the Gentiana line on the other may come again from a common acestral stock.  Gentiana possesses only three bundles in each corolla-lobe.  A variety of plicate between corolla lobes except in case of Gentiana lutea and intracalyx membrane above the throat of calyx-tube are also the common structures in Gentiana.  Thus the pollination mechanism is highly specialized in the genus.  As far as we know, in Gentiana the glandular appendages usually exist at the base of ovary.  If those nectarial processes are correctly interpreted as the representatives of staminodes, gentiana would, undoubtedly, be derived from an ancestral  form with  hypogynous  diplostemonous androecium, and bears no direct relationship to Gentianopsis or Gentianella in which the glands are epipetalous.  It may be reasonable to conclude the Gentiana and Gentianopsis- Gentianella line are two parallel derivatives from a common ancestor which has the floral characters of two series of hypogynous stamens. Gentianopsis and Gentianella may represent branches of a common line with Gentianopsis standing at a lower level, Gentianella being more advanced. Their relations may be diagrammed below:                                                       Gentianopsis                                                                                                                               Gentianella Common ancestor                                                       Gentiana        This new genus consists of fourteen species and two varieties in the world.  Onlyeight species and two varieties are represented in China. They are G. barbara, G. barbatavar. sinensis, G. grandis, G. scabromanginata, G. paludosa, G. nana, G. longistyla,G. lutea, G. contorta, and G. contorta var. Wui.     The species of present genus occur in the alpine regions of North Hemisphere.  InChina t,hey are distributed in Kokonor, Kansu, Shensi, Shansi, Chahar, Hopei, Manchuria,Hupeh, Szechuan, Sikang, Tibet, and Yunnan. G. Yabei (Takeda et Hara) is foundin Japan, G. detonsa (Bott&) in North Europe, G. ciliata (Linn.) in South Europe,G. crinita (Froel.) G. procera (Holm.) and G. degans (A. Nels) in North America.G. barbata is the most widespreading species and reported in Sibiria and China.G. contorta (Royle) is a common plant in Himalayan mountaineous range, China andNorth part of India.     The species and varieties cited in this paper are as follows:           t.  Gentianopsis barbata (Froel.) comb. nov.           la. Gentianopsis barbata (Froel.) var. sinensis, var. nov.          2.  Gentian opsis grandis (H. Sm.) comb. nov.          3.  Gentianopsis scabromarginata (H. Sm.) comb. nov.          4.  Gcntianopsis paludosa (Munro) comb. nov.          5.  Gentianopsis nana sp. nov.          6.  Gentianopsis longistyla, sp. nov.          7.  Gentianopsis lutea, sp. nov.  相似文献   

7.
对上世纪90年代以来我国出版的四部科学计量学著作<科学计量学--指标@模型@应用>、<科学计量研究方法论>、<科学技术指标与评价方法--科技计量学应用>和<科研评价与指标>进行了介绍和评论,在充分肯定我国科学计量学所取得成就的基础上,就制约我国科学计量学研究的若干因素做了简要分析.  相似文献   

8.
9.
黄顺荣 《现代情报》2002,22(3):97-98
图书目录在我国有着悠久的历史.作为我国现存最早的图书目录--<汉书@艺文志>是班固尊重刘歆的编目思想,以<七略>为根据而成的一部反映上古至两汉末年这一时期历史文献的重要参考资料,<汉书@艺文志>同时也保持了<七略>的基本内容.  相似文献   

10.
徐道一先生的&lt;周易科学观&gt;一书,据书评者说:“畅论了&lt;周易&gt;和现代自然科学的联系,综合会通了近十年国内外关于&lt;周易&gt;与现代自然科学的关系的各种论著,更提出了自己的独到见解,……可以说是十年来的科学观点研究&lt;周易&gt;的丰富成果的一次总结“.[徐道一1992,序]徐道一先生自己介绍:&lt;周易科学观&gt;的“第三、四、五章用大量、可靠的现代科学资料从天、地、生、数、理、化综合研究等方面来论述&lt;周易&gt;的一些基本概念“.[徐道一1992,前言]他认为:“从根本上看来,&lt;周易&gt;‘尽宇宙之妙,通天人之际‘“.[徐道一1992,2页]他更认为,正确区分东方科学技术的精华和糟粕的问题中,“核心问题之一是对&lt;周易&gt;的评价“.[徐道一1992,239页]……  相似文献   

11.
中国生物物种大全——“三志”   总被引:1,自引:1,他引:1       下载免费PDF全文
简要介绍了<中国植物志>、<中国动物志>和<中国孢子植物志>三部生物物种巨著的主要内容,其对于生物学、生物分类学和可持续性发展研究的重要价值,对于生物资源利用和保护的重要意义以及编研过程中取得的突破性成果.  相似文献   

12.
13.
From standpoint of floristic division,  Sichuan is located in the middle part of Eastern Asiatic Region (Takhtajan 1978) or is the area where Sino-Himalayan Forest Subkingdom and Sino-Japan Forest Subkingdom meet (wu 1979).  Here exist many so- called Arcto-Tertiary elements and newly originated species or races.  In order to bring the light the origin and differentiation of Eastern Asiatic elements,  cytological investi- gation on plants of this region are very significant.  The materials of the following 5 species were collected on Mt.  Emei in Sichuan Province.  Voucher specimens are kept in CDBI.       1.  Toricellia angulata  Oliver var. intermedia (Harms) Hu       PMC meiotic examination revealed n = 12 at diakinesis (Pl. I fig. 9)       Toricellia,  consisting of 2 spp.,  is endemic to Eastern Asiatic Region.  Based on our result along with the report of Toricellia tiliifolia (Wall.) DC. (2n=24) by Kuro- sawa (1977),  we argue that the basic chromosome number of Toricellia is 12.  Many authors,  such as Airy-Shaw (1973),  Dahlgren (1975,  1977),  Takhtajan (1969,  1980), Thorne (1983),  have adopted Hu’s (1934) treatment erecting it as a monotypic family Toricelliaceae.  Its systematic position,  whether closer to Cornaceae than to Araliaceae or vice versa,  has been in dispute.  Cytologically it seems closer to Araliaceae,  as shown anatomically (Lodriguez 1971),  because the basic chromosome number of Cornaceae s. 1. is x=11,  9,  8 (Kurosawa 1977),  whereas that of Araliaceae is 12 (Raven 1975).       2.  Cardiocrinum giganteum  (Wall.) Makino       Somatic chromosome number,  2n=24 was determined from root-tip cells (Ph. I. fig. 8).       Cardiocrinum (Endl.) Lindl.,  consisting of 3 spp.,  is endemic to Eastern Asiatic Region.  C. giganteum (Wall.) Makino is distributed from Himalayan region to S. W. China.  The present report is in accord with the number reported by Kurosawa (1966) who got the material from Darjeeling of India.  However the karyotype of the present plant is slightly different from that given by Kurosawa.  In the present material,  the satellites of the 1st. pair of chromosomes and the short arms of llst.  pair of chromoso- mes are visibly longer than those of Kurosawa’s drawing (fig. 1,  2) The plants from Yunnan,  Sichuan and Hubei Provinces,  named as C. giganteum var. yunnanense (Leit- chtlin ex Elwes) Stearn,  differ slightly from those of Himalayan region also in outer morphological characters.  The taxon needs both cytological and taxonomical further studies.       3.  Disporum cantoniense  (Lour.) Merr.       PMC meiotic examination revealed n=8 at diakinesis (Pl. I. fig. 6)       This species is widely distributed from Himalayan region through Indo-China to our Taiwan Province and Indonesia. Three cytotypes (2n=14,  16,  30) were reported for the taxon including its variety,  var. parviflorum (Wall) Hara,  by various authors (Ha- segawa 1932,  Mehra and Pathamia 1960,  Kurosawa 1966,  1971 Mehra and Sachdeva 1976a).  Some authors consider D. pullum Salisb. and D. calcaratum D. Don as synonyms of D. cantoniense. So D. cantoniense may be a species aggregate with different extreme races.  Sen (1973a,  b.) reports that the somatic chromosome numbers of D. pullum and D. calcaratum from Eastern Himalayan region are 14,  16,  28,  30,  32.  He also discovered that chromosome alterations in species of Disporum involve not only the num- ber but the structure as well.  He found that in species of Liliaceae where the reproduc- tion is mainly vegetative,  polysomaty often occurs.  In China we have not only D. can- toniense and D. calcaratum but also D. brachystomon Wang et Tang which is similar to D. cantoniense var. parviflorum (Wall.) Hara.  These taxa need further critical studies.      4.  Paris fargesii Franch.      PMC meiotic examination revealed n=5+2B (Voucher no. 112) or n=5 (Voucher no. 62) at MI and AI (Pl. I. fig. 1. 4. 5.).  This is the first report for the species.  A bridge and a fragment were also observed at AI.      Paris polyphylla Smith is extraordinarily polymorphic species.  Hara (1969) re- gards all chinese extreme forms,  such as P. fargesii Franch.,  P. violacea Lévl.,  P. pube- scens (Hand. -Mzt.) Wang et Tang,  etc. as infraspecific taxa of P. polyphylla.  Need- less to say,  the various races of P. polyphylla Smith in China need further critical stu- dies and are good material for further study to understand the speciation.      5.  Reineckia carnea(Andr.) Kunth       Reineckia is a monotypic genus endemic to Eastern Asiatic Region.  In the present material somatic chromosome number in root-tip cells is determined as 2n=38 (Pl. I. fig. 7).  According to the terminology defined by Levan et al.,  the karyotype formula is 2n=28 m+10 sm.  The length of chromosomes varies from 14.28 μ to 5.5 μ. The idiogram given here (fig. 3) is nearly the same as that presented by Hsu et Li (1984). The same number has been previously reported by several authors,  Noguchi (1936),  Satô (1942), Therman (1956).  The karyotype is relatively symmetrical (2B,  accorling to the classi-fication of stebbins 1971) in accord with the opinion of Therman (1956).  相似文献   

14.
《CAJ-CD》、CAJCD及其检索   总被引:2,自引:0,他引:2  
王纯 《情报科学》2000,18(2):165-167
本文论述了<中国学术期刊(光盘版)>全文电子期刊及<中国学术期刊(光盘版)@专题文献数据库>全文数据库的各种特征,并着重分析了检索的多种途径和技能.  相似文献   

15.
<质量手册>的编写在结合汽车综合性能检测站的检测生产特点的基础上,覆盖了<计量评审准则>的要素和全部检测过程,阐明了检测站的质量方针,描述了质量管理体系的构成,是检测站质量管理活动的主要依据.  相似文献   

16.
17.
论胡桃科植物的地理分布   总被引:1,自引:0,他引:1  
 The present paper aims to discuss the geog raphical distribution of the Juglandaceae on the basis of unity of the phylogeny and the process of dispersal in the plants.       The paper is divided into the following three parts:       1.  The systematic positions and the distribution patterns of nine living genera in the family Juglandaceae (namely, Engelhardia, Oreomunnea, Alfaroa, Pterocarya, Cyclo- carya, Juglans, Carya, Annamocarya and Platycarya) are briefly discussed.  The evolu- tional relationships between the different genera of the Juglandaceae are elucidated. The fossil distribution and the geological date of the plant groups are reviewed.  Through the analysis for the geographical distribution of the Juglandaceous genera, the distribu- tion patterns may be divided as follows:       A.  The tropical distribution pattern       a. The genera of tropical Asia distribution: Engelhardia, Annamocarya.       b. The genera of tropical Central America distribution: Oreomunnea, Alfaroa.       B.  The temperate distribution pattern       c. The genus of disjunct distribution between Western Asia and Eastern Asia: Pterocarya.       d. The genus of disjunct distribution between Eurasia and America: Juglans.      e. The genus of disjunct distribution between Eastern Asia and North America: Carya.      f. The genera whose distribution is confined to Eastern Asia: Cyclocarya, Platy- carya.      2.  The distribution of species      According to Takhtajan’s view point of phytochoria, the number of species in every region are counted.  It has shown clearily that the Eastern Asian Region and the Coti- nental South-east Asian Region are most abundant in number of genera and species. Of the 71 living species, 53 are regional endemic elements, namely 74.6% of the total species. The author is of the opinion that most endemic species in Eurasia are of old endemic nature and in America of new endimic nature.  There are now 7 genera and 28 species in China, whose south-western and central parts are most abundant in species, with Pro- vince Yunnan being richest in genera and species.      3.  Discussions of the distribution patterns of the Juglandaceae A.       The centre of floristic region B.         The centre of floristic regions is determined by the following two principles:  a. A large number of species concentrate in a district, namely the centre of the majority; b.  Species of a district can reflect the main stages of the systematic evolution of the Juglandaceae, namely the centre of diversity.  It has shown clearly that the southern part of Eastern Asian region and the northern part of Continental South-east Asian Region (i.c. Southern China and Northern Indo-China) are the main distribution centre of the Juglandaceae, while the southern part of Sonora Region and Caribbean Region  (i.c. South-western U.S.A., Mexico and Central America) are the secondary distribution centre.       As far as fossil records goes, it has shown that in Tertiary period the Juglanda- ceae were widely distributed in northern Eurasia and North America, growing not only in Europe and the Caucasus but also as far as in Greenland and Alaska.  It may be considered that the Juglandaceae might be originated from Laurasia.  According to the analysis of distribution pattern for living primitive genus, for example, Engelhar- dia, South-western China and Northern Indo-China may be the birthplace of the most primitive Juglandaceous plants.  It also can be seen that the primitive genera and the primitive sections of every genus in the Juglandaceae have mostly distributed in the tropics or subtropics. At the same time, according to the analysis of morphological cha- racters, such as naked buds in the primitive taxa of this family, it is considered that this character has relationship with the living conditions of their ancestors.  All the evidence seems to show that the Juglandaceae are of forest origin in the tropical moun- tains having seasonal drying period.       B.  The time of the origin       The geological times of fossil records are analyzed. It is concluded that the origin of the Juglandaceae dates back at least as early as the Cretaceous period.       C.  The routes of despersal       After the emergence of the Juglandaceous plant on earth, it had first developed and dispersed in Southern China and Indo-China.  Under conditions of the stable tempera- ture and humidity in North Hemisphere during the period of its origin and development, the Juglandaceous plants had rapidly developed and distributed in Eurasia and dis- persed to North America by two routes: Europe-Greenland-North  America  route  and Asia-Bering Land-bridge-North America route.  From Central America it later reached South America.      D.  The formaation of the modern distribution pattern and reasons for this forma- tion.      According to the fossil records, the formation of two disjunct areas was not due to the origin of synchronous development, nor to the parallel evolution in the two con- tinents of Eurasia and America, nor can it be interpreted as due to result of transmis- sive function.  The modern distribution pattern has developed as a result of the tectonic movement and of the climatic change after the Tertiary period.  Because of the con- tinental drift, the Eurasian Continent was separated from the North American Conti- nent, it had formed a disjunction between Eurasia and North America. Especially, under the glaciation during the Late Tertiary and Quaternary Periods, the continents in Eu- rasia and North America were covered by ice sheet with the exception of “plant refuges”, most plants in the area were destroyed, but the southern part of Eastern Asia remained practically intact and most of the plants including the Juglandaceae were preserved from destruction by ice and thence became a main centre of survival in the North Hemisphere, likewise, there is another centre of survival in the same latitude in North America and Central America.      E.  Finally, the probable evolutionary relationships of the genera of the Juglanda-ceae is presented by the dendrogram in the text.  相似文献   

18.
 1.  Having analyzed the external morphology of the genus Microula, the author has proposed a series of criteria as bases for the construction of a classification scheme of this genus.  The most important ones are as follows:      1)  The normally developed stem is primitive, and the strongly abbreviated stem more advanced.      2)  The small inconspicuous bracts are more primitive than the large suborbicular densely arranged ones, which almost entirely cover the flowers and the fruits.      3)  Nutlets with small dorsal pit  are more primitive than those with larger pit on one hand or those without it on the other.      4)  The dorsal pit with simple margin precedes that with double margins.      5)  Nutlets with subbasal areola precede those with lateral or apical areola.      6)  Nutlets without glochids precede those with glochids.      2.  Basing upon these criteria the genus Microula may be divided into six sections. The section Schistocaryum may be the primitive one, and the others may be evolved from it respectively.  The possible affinities between them are demonstrated in figure no. two.      3.  The genus Microula, containing 30 species,  is  mainly  distributed  in  the Chinghai-Tibetan plateau and the majority of its species concentrates in the eastern border of the plateau, and of the 30 species 26—that is 90 percent—are endemic to China, and the remaining 4 are distributed elsewhere in China, too, and extending southward and westward to Bhutan, Sikkim, Nepal and Kashmir respectively.  In the region between Heishui, Province Szechuan, and Chinghai Lake there are 9 species, which, curiously, represent all the six sections of Microula, hence this region seems to be the center of maximum variation of this genus.  M. ovalifolia whose nutlets have small dorsal pit and subbasal areola may be considered the most primitive species. Thus the author is of the opinion that the western part of province Szechuan, to which M. ovalifolia is endemic, may probably be the center of origin of the genusMicroula.  相似文献   

19.
The present paper describes the pollen morphology of 30 species belonging to 7 genera of Plumbaginaceae from China.  The pollen grains were all examined under light microscope, and those of some species under scanning and transmission electron microscope.       The pollen grains of the family are subspheroidal, prolate or oblate, (37.5-74.5)× (40.4-81.9)μ in size, 3-colpate, rarely 4-6-colpate,  only pancolpate in  Ceratostigma willmottianum.  The exine 2-layered, 2.0-7.4μ thick, sexine thicker than nexine, verrucate, reticulate or coarsely reticulate.       On the basis of the morphology, two types of pollen grains are distinguished in the family:       (1)  The pollen grains are 3-(rarely 4-6 ) or pancolpate, the exine verrucate. They are found in the tribe Plumbagineae (inculuding the genera Ceratostigma, Plumbago and Plumbagella).       (2)  The pollen grains are all 3-colpate, the exine reticulate or coarsely reticulate. They are found in the tribe Staticeae (including the genera Acantholimon, Ikonnikovia, Goniolimon and Limonium ).  相似文献   

20.
The morphological characters in the genus Orobanche were evaluated from the taxonomic point of view.  The author finds that the plants of this genus are relatively similar to each other in respect to characters of vegetative organs, fruits and seeds.  But the differences in the floral structures can be served as a basis for delimitating infrageneric taxa.   The seed coat of 18 species and pollen grains of  6 species were also examined under scanning electron microscope (SEM). They seem to have little significance for distinguishing species.       The result supports G. Beck’s (1930) division of the genus Orobanche into 4 sections, of which 2 occur in China, based on the characters of the inflorescence, bracteoles and calyx. The author considers that some characters, such as anther hairy or not, upper lip of corolla entire or not, lower lip longer or shorter than the upper one, the state of corolla-tube inflec-  tion and the hair type of filaments and plants, are important in distinguishing Chinese species.  A key to the species of Orobanche in China is given.       This genus consists of about 100 species, and is mostly confined to Eurasia, with over 60  species found in Caucasus and Middle Asia of USSR, where may be the mordern  distribu-  tional  centre.        Orobanche L. in China is represented by 23 species, 3 varieties and l forma. As shown in  Table 1, most species (12 species) are found in Xinjiang, which clearly shows a close floristic  relationship between this region and Middle Asia of USSR.  6 species are endemic to China,  of which 4 are confined to the Hengduan Mountains  (Yangtze-Mekong-Salwin divide).        The relationships between this genus and related ones of Orobanchaceae are also discussed.  The author holds the following opinions: the genus Phelypaea Desf. should be considered as a   member of Orobanche L. Sect. Gymnocaulis G. Beck,  the monotypic genus,   Necranthus A.   Gilli endemic to Turkey, is allied with Orobanche L. Sect.  Orobanche, the monotypic genus,   Platypholis Maxim, endemic to Bonin Is. of Japan, is far from Orobanche L. in relation and   should be regarded as a separate genus.        The 11 OTU’s, including all the sections of Orobanche L. and 7 genera of Orobanchaceae,   and 15 morphological characters were used in the  numerical  taxonomic treatment  to  test  the   above-mentioned  suggestions.   After standardization of characters, the correlation matrices were   computerized.  The correlation matrices were made to test the various clustering methods.   At    last the UPGMA clustering method was chosen and its result is shown in a phenogram.  The   result of numerical analysis is basically in accordance with the suggestions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号