首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective of this study was to explore the ideas and reasoning students use to make a collaborative environmental management decision. Eight groups of 8th‐grade students (n = 24) considered ecological and economic information about an invasive aquatic species to make a management recommendation. In addition to discussing the exact information they were given, the groups made a variety of interpretations, elaborations, and inferences concerning ecological structure and dynamics and practical aspects of the management scenario. Value judgments and concerns with uncertainty also appeared in students' discussions, to differing degrees. The students' discussions were compared with scientists' guidelines for making environmental management decisions, and with one expert's analysis of the particular management scenario the students considered. A major finding was that whereas across groups students touched on all of the themes that scientists consider to be important for making environmental management decisions, within most groups students focused more narrowly on particular themes, giving cursory treatment to other dimensions of the problem. The results point to a need to foster students' ecological background knowledge and integrative, systems thinking skills for making principled decisions about complex environmental issues. © 2002 Wiley Periodicals Inc. J Res Sci Teach 39: 341–368, 2002  相似文献   

2.
Computational thinking (CT) is a way of making sense of the natural world and problem solving with computer science concepts and skills. Although CT and science integrations have been called for in the literature, empirical investigations of such integrations are lacking. Prior work in natural selection education indicates students struggle to explain natural selection in different contexts and natural selection misconceptions are common. In this mixed methods study, secondary honors biology students learn natural selection through CT by engaging in the design of unplugged algorithmic explanations. Students learned CT principles and practices and applied them to learn and explain the natural selection process. Algorithmic explanations were used to scaffold transfer of natural selection knowledge across contexts through investigation of three organisms and the creation of generalized natural selection algorithms. Students' pre- and post-unit algorithmic explanations of natural selection were analyzed to answer the following research questions: (a) How do students' conceptions of natural selection change over the course of a CT focused unit? (b) What is the relationship between CT and natural selection in students' algorithmic explanations? (c) What are students' perspectives of learning natural selection with CT? Results indicate students' conceptions of natural selection increased and natural selection misconceptions decreased over the course of the unit. Within their post-unit algorithmic explanations, students used specific CT principles in conjunction with natural selection concepts to explain natural selection, which helped them to learn the details of the natural selection process and correct their natural selection misconceptions. Students indicated the use of CT in unplugged algorithmic explanations in different contexts helped them learn natural selection. This study shows unplugged CT can be used to teach students science content, and it provides an example for further CT and science integrations. Implications for the field are discussed.  相似文献   

3.
It is often observed that most international students are less likely to express their opinions in class. The lack of communicative engagement has negative impacts on students' academic performance. The objective of this article was to explore a range of possible explanations for international students' lack of engagement in class discussions and to seek a way to model how an e-tool could be applied to make international students more comfortable communicating. The present study viewed that those students' communication problems are induced by the following multiple factors: a sense of belonging to a minority, cultural difference, and communication apprehension. Blogs were thus suggested to enhance those students' communication contexts. An ideal model of blogging interactions between students and teachers was theoretically proposed.  相似文献   

4.
In this study, we analyzed the quality of students' written scientific explanations found in notebooks and explored the link between the quality of the explanations and students' learning. We propose an approach to systematically analyzing and scoring the quality of students' explanations based on three components: claim, evidence to support it, and a reasoning that justifies the link between the claim and the evidence. We collected students' science notebooks from eight science inquiry‐based middle‐school classrooms in five states. All classrooms implemented the same scientific‐inquiry based curriculum. The study focuses on one of the implemented investigations and the students' explanations that resulted from it. Nine students' notebooks were selected within each classroom. Therefore, a total of 72 students' notebooks were analyzed and scored using the proposed approach. Quality of students' explanations was linked with students' performance in different types of assessments administered as the end‐of‐unit test: multiple‐choice test, predict‐observe‐explain, performance assessment, and a short open‐ended question. Results indicated that: (a) Students' written explanations can be reliably scored with the proposed approach. (b) Constructing explanations were not widely implemented in the classrooms studied despite its significance in the context of inquiry‐based science instruction. (c) Overall, a low percentage of students (18%) provided explanations with the three expected components. The majority of the sample (40%) provided only claims without any supporting data or reasoning. And (d) the magnitude of the correlations between students' quality of explanations and their performance, were all positive but varied in magnitude according to the type of assessment. We concluded that engaging students in the construction of high quality explanations may be related to higher levels of student performance. The opportunities to construct explanations in science‐inquiry based classrooms, however, seem to be limited. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 583–608, 2010  相似文献   

5.
Abstract

The effects of students' conceptual levels and teachers' instruction patterns on students' motivation to learn academic course content were investigated. An examination of 63 students enrolled in a course entitled “Motivation and Performance in Organizations” at West Point yielded statistically significant interactions: For low-conceptual-level students, direct teaching methods maximize motivation to learn course content; for high-conceptual-level students, nondirect instruction significantly enhances motivation. These results expand existing educational literature that suggests that proper conceptual level/instruction pattern matches enhance students' motivation in the classroom. Educators may use this knowledge to develop teaching environments that support the specific learning needs of individual students.  相似文献   

6.
The importance of students' learning to learn competence for academic achievement, as well as their well-being at school and in life, is increasingly emphasised by educators and policy makers in national curricula and educational strategies. In an uncertain and complex world, learners need to become autonomous, be able to analyse challenges and apply knowledge in different contexts, address complex tasks, and create new knowledge. This article explores concepts and approaches to the development of students' learning to learn competence in the context of education in Estonia. First, the conceptualisation, model and dimensions of learning to learn competence are described and related challenges for teachers are analysed. Second, an overview of Estonian teachers' current practices, beliefs, knowledge, skills and occupational standards relevant to students' learning to learn competence is provided. We discuss how Estonian teacher education policy may enhance or inhibit the work of teachers when supporting students to develop learning to learn competence. Future directions for teacher educators and how to prepare teachers to support the development of students' learning to learn competence are suggested.  相似文献   

7.
Inquiry instruction often neglects graphing. It gives students few opportunities to develop the knowledge and skills necessary to take advantage of graphs, and which are called for by current science education standards. Yet, it is not well known how to support graphing skills, particularly within middle school science inquiry contexts. Using qualitative graphs is a promising, but underexplored approach. In contrast to quantitative graphs, which can lead students to focus too narrowly on the mechanics of plotting points, qualitative graphs can encourage students to relate graphical representations to their conceptual meaning. Guided by the Knowledge Integration framework, which recognizes and guides students in integrating their diverse ideas about science, we incorporated qualitative graphing activities into a seventh grade web-based inquiry unit about cell division and cancer treatment. In Study 1, we characterized the kinds of graphs students generated in terms of their integration of graphical and scientific knowledge. We also found that students (n = 30) using the unit made significant learning gains based on their pretest to post-test scores. In Study 2, we compared students' performance in two versions of the same unit: One that had students construct, and second that had them critique qualitative graphs. Results showed that both activities had distinct benefits, and improved students' (n = 117) integrated understanding of graphs and science. Specifically, critiquing graphs helped students improve their scientific explanations within the unit, while constructing graphs led students to link key science ideas within both their in-unit and post-unit explanations. We discuss the relative affordances and constraints of critique and construction activities, and observe students' common misunderstandings of graphs. In all, this study offers a critical exploration of how to design instruction that simultaneously supports students' science and graph understanding within complex inquiry contexts.  相似文献   

8.
Policy documents in science education suggest that even at the earliest years of formal schooling, students are capable of constructing scientific explanations about focal content. Nonetheless, few research studies provide insights into how to effectively provide scaffolds appropriate for late elementary‐age students' fruitful creation of scientific explanations. This article describes two research studies to address the question, what makes explanation construction difficult for elementary students? The studies were conducted in urban fourth, fifth, and sixth grade classrooms where students were learning science through curricular units that contained 8 weeks of scaffold‐rich activities focused on explanation construction. The first study focused on the kind and amount of information scaffold‐rich assessments provided about young students' abilities to construct explanations under a range of scaffold conditions. Results demonstrated that fifth and sixth grade tests provided strong information about a range of students' abilities to construct explanations under a range of supported conditions. On balance, the fourth grade test did not provide as much information, nor was this test curricular‐sensitive. The second study provided information on pre–post test achievement relative to the amount of curricular intervention utilized over the 8‐week time period with each cohort. Results demonstrated that when taking the amount of the intervention into account, there were strong learning gains in all three grade‐level cohorts. In conjunction with the pre–post study, a type‐of‐error analysis was conducted to better understand the nature of errors among younger students. This analysis revealed that our youngest students generated the most incomplete responses and struggled in particular ways with generating valid evidence. Conclusions emphasize the synergistic value of research studies on scaffold‐rich assessments, curricular scaffolds, and teacher guidance toward a more complete understanding of how to support young students' explanation construction. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 49: 141–165, 2012  相似文献   

9.
Chemistry is commonly portrayed at three different levels of representation – macroscopic, submicroscopic and symbolic – that combine to enrich the explanations of chemical concepts. In this article, we examine the use of submicroscopic and symbolic representations in chemical explanations and ascertain how they provide meaning. Of specific interest is the development of students' levels of understanding, conceived as instrumental (knowing how) and relational (knowing why) understanding, as a result of regular Grade 11 chemistry lessons using analogical, anthropomorphic, relational, problem‐based, and model‐based explanations. Examples of both teachers' and students' dialogue are used to illustrate how submicroscopic and symbolic representations are manifested in their explanations of observed chemical phenomena. The data in this research indicated that effective learning at a relational level of understanding requires simultaneous use of submicroscopic and symbolic representations in chemical explanations. Representations are used to help the learner learn; however, the research findings showed that students do not always understand the role of the representation that is assumed by the teacher.  相似文献   

10.
Learning-by-explaining (to fictitious others) has been shown to be an effective instructional method to support students' generative learning. In this study, we investigated differential effects of the modality of explaining (written versus oral) on students' quality of explanations and learning. Forty-eight students worked on a hypertext about combustion engines. Afterwards, they were asked to explain the learning content, either orally or in writing. Findings indicated that providing written explanations was more effective than providing oral explanations in supporting students to organize the content of the explanations. The higher levels of organization yielded higher levels of students' conceptual knowledge. In contrast, generating oral explanations, relative to written explanations, triggered students' elaborative processes to a more pronounced extent, which was more beneficial to attaining transferable knowledge. Thus, we conclude that the modality of explaining plays a critical role in learning-by-explaining inasmuch as different modes differentially support student learning.  相似文献   

11.
12.
13.
To help explain the differences in students' performance on internationally administered science assessments, cross-national, video-based observational studies have been advocated, but none have yet been conducted at the elementary level for science. The USA and Germany are two countries with large formal education systems whose students underperform those from peers on internationally administered standardized science assessments. However, evidence from the 2011 Trends in International Mathematics and Science Exam assessment suggests fourth-grade students (9–10 year-olds) in the USA perform higher than those in Germany, despite more instructional time devoted to elementary science in Germany. The purpose of this study is to comparatively analyze fourth-grade classroom science in both countries to learn more about how teachers and students engage in scientific inquiry, particularly explanation-construction. Videorecordings of US and German science instruction (n 1?=?42, n 2?=?42) were sampled from existing datasets and analyzed both qualitatively and quantitatively. Despite German science lessons being, on average, twice as long as those in the USA, study findings highlight many similarities between elementary science in terms of scientific practices and features of scientific inquiry. However, they also illustrate crucial differences around the scientific practice of explanation-construction. While students in German classrooms were afforded more substantial opportunities to formulate evidence-based explanations, US classrooms were more strongly characterized by opportunities for students to actively compare and evaluate evidence-based explanations. These factors may begin to help account for observed differences in student achievement and merit further study grounded in international collaboration.  相似文献   

14.
Issues regarding scientific explanation have been of interest to philosophers from Pre-Socratic times. The notion of scientific explanation is of interest not only to philosophers, but also to science educators as is clearly evident in the emphasis given to K-12 students' construction of explanations in current national science education reform efforts. Nonetheless, there is a dearth of research on conceptualizing explanation in science education. Using a philosophically guided framework—the Nature of Scientific Explanation (NOSE) framework—the study aims to elucidate and compare college freshmen science students', secondary science teachers', and practicing scientists' scientific explanations and their views of scientific explanations. In particular, this study aims to: (1) analyze students', teachers', and scientists' scientific explanations; (2) explore the nuances about how freshman students, science teachers, and practicing scientists construct explanations; and (3) elucidate the criteria that participants use in analyzing scientific explanations. In two separate interviews, participants first constructed explanations of everyday scientific phenomena and then provided feedback on the explanations constructed by other participants. Major findings showed that, when analyzed using NOSE framework, participant scientists did significantly “better” than teachers and students. Our analysis revealed that scientists, teachers, and students share a lot of similarities in how they construct their explanations in science. However, they differ in some key dimensions. The present study highlighted the need articulated by many researchers in science education to understand additional aspects specific to scientific explanation. The present findings provide an initial analytical framework for examining students' and science teachers' scientific explanations.  相似文献   

15.
A key issue for mathematics education is howchildren can be supported in shifting from `because it looks right' or`because it works in these cases' to convincing arguments which work ingeneral. In geometry, forms of software usually known as dynamicgeometry environments may be useful as they can enable students tointeract with geometrical theory. Yet the meanings that students gain ofdeductive reasoning through experience with such software is likely to beshaped, not only by the tasks they tackle and their interactions with theirteacher and with other students, but also by features of the softwareenvironment. In order to try to illuminate this latter phenomenon, and todetermine the longer-term influence of using such software, this paperreports on data from a longitudinal study of 12-year-old students'interpretations of geometrical objects and relationships when using dynamicgeometry software. The focus of the paper is the progressivemathematisation of the student's sense of the software, examining theirinterpretations and using the explanations that students give of thegeometrical properties of various quadrilaterals that they construct as oneindicator of this. The research suggests that the students' explanations canevolve from imprecise, `everyday' expressions, through reasoning that isovertly mediated by the software environment, to mathematicalexplanations of the geometric situation that transcend the particular toolbeing used. This latter stage, it is suggested, should help to provide afoundation on which to build further notions of deductive reasoning inmathematics.  相似文献   

16.
The increasing number of people studying abroad has drawn significant scholarly attention to the experiences of international students. While these works have productively informed policy and practice regarding how international students may be better supported, they have not always considered the active ways international students contribute to higher education. This article suggests that adopting the notion of experience as a conceptual starting point is problematic because it only partially illuminates international students' agency and reproduces understandings of them as a vulnerable group. The more active notion of practice, by contrast, suggests a more agentive subject who is a pivotal actor in spaces of education. The main argument in this article is that the abiding focus on international students' experiences will be productively unsettled by orienting attention to their practices and theorising the notion of practice in more fluid and dynamic ways. After critically engaging with the existing literature, the article outlines four ways that a focus on international students' practices may reanimate debates. A focus on practice will: (1) show how international students actively contribute to spaces of higher education, including classrooms, campuses and other sites of sociality; (2) demand that researchers theorise agency in more expansive ways and consider the practices of a broader set of social groups; (3) encourage researchers to make use of a wider set of qualitative research methods; and (4) create a stronger political foundation from which to defend the interests of international students in a post-COVID-19 world.  相似文献   

17.

The present paper explores what, and how, student teachers may learn about theory and practice from writing cases, and examines some pedagogical features that may contribute to these results. Drawing on data collected from our course "Principles of Learning for Teaching", including student cases from outline to final drafts and students' course reflections, we found that students' successive case drafts demonstrated a development from naïve generalizations to sophisticated, theory-based explanations of the issues at play in their cases. In particular, we suggest that students' cases demonstrated some of the moves that Berliner (1986, 1991) identified as characteristic of more "expert" thinking about teaching. We propose that reading theory in context with writing cases, that sharing cases with peer readers, that specific, theoretically grounded, and concrete feedback from instructors, and that providing multiple opportunities for revision may have been most useful in helping student teachers learn to think like a teacher.  相似文献   

18.
The debate around which factors drive medical students' learning is ongoing and controversial. What is the influence of an assessment's weighting on the motivation of students to study the particular subject? One medical school in London is in a unique position to investigate this question. At our institution, the weighting of Anatomy within the overall scheme of assessment has changed twice in recent years, a trend of increased weighting. This enabled a comparative investigation into the effect these changes have had on the students' motivation to learn Anatomy. A five‐point Likert‐scale questionnaire survey was used to evaluate students. A section within a broad survey of Anatomy teaching and learning at our institution was dedicated to the evaluation of the amount of weighting Anatomy received within the assessment structure and the effect this had on students' motivation toward learning the subject. Increasing Anatomy's weighting within the scheme of assessment produced a dramatic increasing trend toward students' motivation to learn Anatomy. The weighting of Anatomy has a profound effect on students' motivation to learn it. Although multifactorial and complex in nature, medical students' self‐reported drive to study a subject is directly influenced by the weighting of the subject in the overall scheme of assessment. Anat Sci Educ 2:199–204, 2009. © 2009 American Association of Anatomists.  相似文献   

19.

This study describes the trends in students' explanations of biological change in organisms. A total of 96 student volunteers (8 students from each of 2nd, 5th, 8th, and 12th grades from 3 localities) were interviewed individually and each student was presented a series of graphics depicting natural phenomena. Students' explanations to questions of how something occurred were assigned to one of three categories (responses addressing how something occurred, why something occurred, and 'I don't know'). While the number of responses in each category was roughly equivalent in prominence across grade levels, the majority of students were unable to offer a causal explanation of how a phenomena occurred. An unexpected phenomenon was the students' predilection to redirect the interview question so they could answer them. If asked a how question, as they were in every interview instance, 32% the students answered with a 'why' response. The way biology is taught, the structure of biology or/and how we learn it could shed some light into this phenomenon and has implications for science educators.  相似文献   

20.
Microcomputers and appropriate software have the potential to help students learn. They can also serve as appropriate media for investigating how students learn. In this article we describe a research strategy examining learning and behavior when students interacted with microcomputers and software. Results from two preliminary studies illustrate the strategy. A major feature of the strategy included recording students interacting with microcomputer software interfaced with a VCR. The VCR recorded the video output from a microcomputer and students' verbal commentary via microphone input. This technique allowed students' comments about their observations, perceptions, predictions, explanations, and decisions to be recorded simultaneously with their computer input and the display on the microcomputer monitor. The research strategy described can provide important information about cognitive and affective behaviors of students engaged in using instructional software. Research studies utilizing this strategy can enhance our understanding of how students develop and employ important concepts and scientific relationships, how students develop problem-solving skills and solve problems, and how they interact with instructional software. Results of such studies have important implications for teaching and for the design of instructional software.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号