首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《数学通报》2020年9期数学问题2562给出了不等式:已知a,b,c>0满足a+b+c=3,则1-ab 1+ab+1-bc 1+bc+1-ca 1+ca≥0(1).不等式结构对称,值得关注.为此,本文拟对不等式(1)的证明方法、变式、推广等方面作一探究.为了表述方便,由∑n k=1 x k y k·∑n k=1 x ky k=∑n k=1 x k y k 2·∑n k=1 x ky k 2≥∑n k=1 x k 2,可得柯西不等式的一个变式:引理设x 1,x 2,…,x n>0,y 1,y 2,…,y n>0,则有∑n k=1 x k y k≥(∑n k=1 x k)2∑n k=1 x ky k(2),等号当且仅当y 1=y 2=…=y n时成立.  相似文献   

2.
贝努利不等式 :设 x>- 1 ,且 x≠ 0 ,n是不小于 2的整数 ,则 ( 1 x) n>1 nx.这个不等式的证明方法之一是用数学归纳法 .读者可参考现行课本代数下册 ,也可用均值不等式证明 :对 n∈ N,n≥ 2 ,当 - 1 0 ,1 nx≤ 0 ,因而 ( 1 x ) n>0≥ 1 nx,故不等式成立 ;当 x>- 1n且 x≠ 0时 ,n 1 nx =n ( 1 nx)· 1· 1… 1(n- 1 )个<( 1 nx) 1 1 … 1n =1 x,∴ ( 1 x) n>1 nx.此处不等式严格成立在于 x≠ 0综上 ,只要 x>- 1且 x≠ 0 ,均有 ( 1 x) n>1 nx( n≥ 2 ) .下面给出定理的应用例 1 已知 …  相似文献   

3.
伯努利不等式,在高考数学和竞赛数学中具有广泛的应用,但直接运用伯努利不等式显得有些不太方便,需要将伯努利不等式(1+x)n≥1+nx(其中x>-1,n∈N*,当且仅当x=0时,取等.)变成x n≥nx-(n-1)(其中x>0,n∈N*,当且仅当x=1时取等.)的形式.为了使不等式“x n≥nx-(n-1)”的应用范围更广,考虑通过引入参数的方式将其推广.接下来,将给出该不等式的推广和应用.  相似文献   

4.
一个不等式的推广   总被引:3,自引:0,他引:3  
文 [1 ]给出了下面一个三角形不等式 :设△ABC的三边长分别为a、b、c ,则13 ≤ a2 +b2 +c2(a +b +c) 2 <12 ,①当且仅当a =b =c时等号成立 .本文将不等式①推广为 :设△ABC的三边长分别为a、b、c .对于任意正整数n ,n >1 ,有13 n - 1≤ an+bn+cn(a +b +c) n<12 n- 1,②当且仅当a =b =c时等号成立 .证明 :根据文 [2 ],有an+bn+cn3 ≥ a +b +c3n,当且仅当a =b =c时等号成立 .由此易知第一个不等式成立 ,取等号的条件也成立 .下面证明第二个不等式 ,这等价于an+bn+cn<12 n - 1(a +b +c) n.③用数学归纳法 .当n =2时 ,由式①知式③成立 .设n …  相似文献   

5.
在解不等式问题时 ,调整系数、拆项、补项是常用技巧 .但调整系数、拆项、补项时 ,既要考虑不等式的结构 ,又要符合相关要求 ,难以直接确定 .此时若用待定系数法 ,就可兼顾几方面要求 ,只需求出待定系数就行了 .例 1 已知 :1≤ 3x+2 y≤ 3,2≤ x+3y≤5 ,求 5 x+8y的取值范围 .分析 用 3x+2 y及 x+3y将 5 x+8y表示出来是解题的关键 .设 5 x+8y=m(3x+2 y) +n(x+3y) =(3m+n) x+(2 m+3n) y(m,n为待定系数 ) .由 3m+n=5 ,2 m+3n=8,解得 m=1,n=2 .解  5 x+8y=(3x+2 y) +2 (x+3y) ,∵ 2≤x+3y≤ 5 ,∴ 4≤ 2 (x+3y)≤ 10 .又 1≤ 3x+2 y≤ 3,∴ …  相似文献   

6.
一个不等式的推广   总被引:1,自引:0,他引:1  
文 [1 ]提出一个猜想不等式 :设 x,y,z∈ ( 0 , ∞ ) ,则有xx y yy z zz x≤ 322 . ( 1 )文 [2 ]应用导数给出了证明 ,文 [3]又给出其下界估计xx y yy z zz x>1 . ( 2 )现将其推广 :设 x,y,z∈ ( 0 , ∞ ) ,n≥2 ,则有1 xx y,yy z>yy z,n zz x>zz x,所以n xx y n yy z n zz x>xx y yy z zz x>xx y z yy z x zz x y=1 .再证右端 .当 n=2时 ,由 ( 1 )知 ,不等式 ( 3)显然成立 .现设 n>2 ,…  相似文献   

7.
在国内外数学竞赛以及一些数学杂志上出现了一类分式不等式 ,许多专家都曾对这类不等式作过研究 ,指出了较多好的证法 .本文旨在说明这类分式不等式有一种统一初等证法 ,就是都利用一个常见的简单不等式 (a1+a2 +… +an) (1a1+ 1a2 +… +1an)≥n2 (ai >0 ,i=1 ,2 ,3,… ,n)加以证明的 .问题 1  (英国竞赛题 )设正数a1,a2 ,… ,an 之和为S ,求证 :a1 S -a1+a2S -a2+… +anS -an≥ nn - 1 (n∈N ,n≥ 2 ) .解析 原不等式等价于(a1 S-a1 +1 ) +(a2S-a2 +1 ) +… +(anS-an +1 )≥ nn - 1 +n ,即 SS-a1+ SS-a2 +… + SS-an ≥ n2n- 1 ,即…  相似文献   

8.
20 0 3年高考江苏卷第 (2 1)题内容新、题型新 ,集中考查了导数和不等式证明等知识 ,解答的思路和方法较多 ,这里给出不同层次的若干思路和方法供参考 .(2 1)已知 a>0 ,n为正整数 .( )设 y=(x- a) n,证明 y′=n(x- a) n-1 ;( )设 fn(x) =xn- (x- a) n,对任意 n≥ a,证明 fn+ 1 ′(n+1) >(n+1) fn′(n) .证明  ( ) y′=limΔx→ 0(x+Δx- a) n- (x- a) nΔx=limΔx→ 0 [(x+Δx- a) n-1 +(x+Δx- a) n-2 (x- a) +… +(x- a) n-1 ]=(x- a) n-1 +(x- a) n-2 (x- a) +(x- a) n-3 (x- a) 2 +… +(x- a) n-1=n(x- a) n-1 . (洪成、王严、王雪 供…  相似文献   

9.
在数学解题中经常碰到有关恒成立问题 ,解决这类问题的方法尽管很多 ,但都离不开一些基本的数学思想 ,如化归思想、函数思想、方程思想等等 .笔者在平时的教学过程中对这类问题的解法作了一点归纳 ,供大家参考 .一、利用一次函数的性质对于一次函数 f(x) =kx +b,x∈ [m ,n] ,有f(x) >0恒成立 f(m) >0 ,f(n) >0 ;f(x) <0恒成立 f(m) <0 ,f(n) <0 .例 1  |p| <2 ,p∈R ,欲使不等式(log2 x) 2 +(p-2 )log2 x+1-p >0恒成立 ,求x的取值范围 .分析 若直接解关于log2 x的不等式 ,再由 p的取值范围求出x的取值范围 ,不仅化简过程十分繁杂 ,而…  相似文献   

10.
定理设xi>0,(i=1,2,…,n),若k≥1,则x1/kx1 x2 x3 … xn x2/x1 kx2 x3 … xn … xn/x1 x2 x3 … kxn≤n/n k-1.(1)若k<1,则不等式(1)不等号反向.证明因为不等式左端是关于x1,x2,…,xn的一次齐次对称式,故可设x1 x2 x3 … xn=1,则不等式(1)可以分为  相似文献   

11.
从一类对象或一个范畴的研究过渡到更广的一类对象或更广范畴上的研究 ,称为推广。类比是数学命题推广的一个工具。从逻辑上说 ,推广就是将数学命题的外延扩大 ,来研究它的内涵变化特点。在历年高考试题中 ,推广类试题曾多次出现。1 在不等式中的推广例 1 已知x∈ ( 0 ,+∞ ) ,由不等式 x +1x ≥ 2 ,x +4x2 =x2 +x2 +4x2 ≥ 3 ,… ,由此启发我们可以推广为x +axn≥n +1 (n∈N ) ,则a =。分析 首先a >0 ,由基本不等式“A≥G(A为算术平均值、G为几何平均值 )”得x +axn=xn +xn +…+xn +axn ≥ (n +1 )n + 1xn· xn … xn·axn ,对照题设…  相似文献   

12.
一个错误的“证明”   总被引:2,自引:0,他引:2  
《数学通讯》1 997年第 7期上的征解问题 1 73是 :设xi>0 ,i=1 ,2 ,… ,n(n≥ 3 ) ,则有Sn=x2x1(x3+x4+… +xn) + x3x2(x4 +… +xn+x1) +… + xnxn - 1(x1+x2 +… +xn - 2 ) + x1xn(x2 +x3+… +xn - 1)≥ (n -2 )∑ni=1xi.该刊 1 999年第 1 2期刊出张煜的一个“证明”按此“证明”有S6 =x1( x4 x3+ x5x4+ x6 x5+ x3x6) +x2 ( x5x4+ x6 x5+ x1x6+ x4 x1) +x3( x6 x5+ x1x6+ x2x1+ x5x2) +x4 ( x1x6+ x2x1+ x3x2+ x6 x3) +x5( x2x1+ x3x2+ x4 x3+ x1x4) +x6 ( x3x2+ x4 x3+ x5x4+ x2x5)≥ 4x1+ 4x2 +… + 4x6 =( 6-2 )∑6i=1xi.然而 ,最左边…  相似文献   

13.
一个不等式的下界估计   总被引:2,自引:0,他引:2  
《数学通报》2 0 0 2年 8月号问题 1 388为 :已知 x>0 ,y>0 ,且 x+ y=1 ,求证 :( x + y ) ( 11 + x+ 11 + y)≤ 4 33.( 1 )本文旨在给出不等式 ( 1 )左式的下界估计 .定理 若 x>0 ,y>0 ,且 x + y=1 ,则( x + y ) ( 11 + x+ 11 + y) >1 +22 . ( 2 )证明 令 u=xy,则 0 ( 1 + 22 ) 2 ( 1 + 2 u) ( 32 + u2 + 22 + u2 ) >32 + 2 ( 1 + 2 u) ( 3+ 2 2 + u2 ) >( 32 +2 ) ( 2 + u2 ) 6 u+ 2 ( 1 + 2 u) 2 + u2 >( 32+ 2 ) u2 + 2 2 .( * )∵ ( 32 + 2 ) u≤ ( 32 + 2 )×…  相似文献   

14.
巧用均值不等式证明一类分式不等式   总被引:1,自引:0,他引:1  
若x、y∈R+ ,则x +y≥ 2 xy  ( ) ,这是众所周知的均值不等式。本文利用不等式 ( )给出一类难度较大的分式不等式的简捷证明 ,相信能够引起众多中学生的浓厚兴趣。例 1 已知a>1 ,b>1 ,求证  a2b-1 +b2a -1 ≥ 8。(第 2 6届独联体数学奥林匹克试题 )证明 据不等式 ( )得a2a -1 =(a -1 ) +1a -1 +2≥ 4,同理有  b2b-1 ≥ 4,∴ a2b-1 +b2a-1 ≥ 2 a2b-1 · b2a-1 ≥ 2 4·4=8。例 2 设α、β、γ为锐角 ,且sin2 α +sin2 β +sin2 γ =1 ,则有 sin3αsinβ +sin3βsinγ+sin3γsinα≥ 1。( 1 994年《数学通报》第 1 0期问题栏 91 2…  相似文献   

15.
<正>《数学通报》2014年9月号问题2201如下:问题2201[1]已知a、b、c∈R+,且满足a2/1+a2+b2/1+b2+c2/1+c2=1,求证:abc≤2/4.本文从变元的个数与指数出发,利用均值不等式给出上述条件不等式的一个推广.推广已知n∈N+,n≥2,k∈N+,ai∈n  相似文献   

16.
证明与自然数有关的不等式问题 ,数学归纳法是首选 ,但完成 p(k+ 1 )的证明却是难点 .笔者收集了部分以证明不等式为出发点的高考题 ,发现它们均可以用数学归纳法完成 ,而且用分析法完成 p(k+ 1 )的证明 ,方法朴实简单 ,易于掌握 ,堪称通法 .例 1  (1 992年“三南”高考题 )求证 :1 + 12 + 13 +… + 1n<2n(n∈N ) .证明  (1 )当n=1时 ,左边 =1 <2 =右边 .不等式成立 .(2 )假设当n=k时 ,不等式成立 ,即1 + 12 + 13 +… + 1k <2 k ,那么  1 + 12 + 13 +… + 1k+ 1k + 1  <2 k+ 1k + 1 .现在只需证明2k+ 1k+ 1 <2 k+ 1…  相似文献   

17.
设xi∈R (ι=1,2,…,n),n≥3,xn 1=x1,xn 2=x2,1954年Shapiro,H.S.猜测有n元不等式这个不等式在数学界引起了强烈的兴趣,经过30多年的研究,问题得以解决,现已得知当n≤12或n为不大于23的奇数时,这个不等式成立,而对其余n均不成立.当n=3时的(1)为:设x,y,z∈R  相似文献   

18.
一道美国数学月刊问题的简解   总被引:3,自引:3,他引:0  
设x,y,z∈(0,+∞)且x2+y2+z2=1.求函数f=x+y+z-xyz的值域. 此问题最早出现在美国<数学月刊>问题征解中,后又出现在中国不等式研究小组网站上寻求初等的解法,至今无人给出它的初等解法.笔者通过三角及导数的知识给出了此问题的一种简解,现整理出来供参考.  相似文献   

19.
本刊2006年第6期刊出的由笔者提供的有奖解题擂台(82)是:设x、y、z是正实数,满足x2 y2 z2=1,n是正整数,证明或否定:1/(1-x~(2n)) 1/(1-y~(2n)) 1/(1z~(2n))≥(n n1)~(1 1/n).(1)本文给出不等式(1)的起源、引申及擂题(82)的评注.1起源《美国数学月刊》2006年第1期刊登了德国人Ol  相似文献   

20.
一个数学问题的再探讨   总被引:1,自引:1,他引:0  
1 问题 《数学通报》2002年8月号问题1388为: 已知x>0,y>0,且x+y=1,求证 文[1]给出了不等式(1)左式的下界估计:文[2]给出了不等式(1)的指数推广:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号