首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我们知道,在△ABC中,已有下列不等式: sinAsinBsinc≤(3/8)3(1/2)=sin~3(π/3) ① Sin(A/2)sin(B/2)sin(C/2)≤1/8=sin~3(π/6) ② 这类不等式可以推广为: 命题 在△ABC中, Sin(A/k)sin(B/k)sin(C/k)≤sin~3(π/3k)(k∈N) ③  相似文献   

2.
一、利用正弦、余弦定理结合面积公式求三角形的面积 例1(2012年高考江西理18)在△ABC中,角A,B,C的对应边分别为a,b,c.已知A=π/4,并且bsin(π/4+C)-csin(π/4+B)=a. (1)求证:B-C=π/2; (2)若a=√2,求△ABC的面积. 解析:(1)已知由bsin(π/4+C)-csin(π/4+B)=a,应用正弦定理得: sin Bsin(π/4+C)-sin Csin(π/4+B)=sin A.  相似文献   

3.
在△ABC中,设△ABC的面积为S,角A,B,C所对的边分别为a,b,c,则有下列不等式链:a^2+b^2+c^2≥bc+ca+ab≥4√3S.①类比此不等式,文[1]得到一个类似不等式:a^2 sinA/2+b^2 sinB/2+c^2 sin C/2≥bcsin A/2+ca sin B/2+ab sin C/2≥2√3S.  相似文献   

4.
一个新的三角不等式   总被引:1,自引:1,他引:0  
在△ABC中,成立以下不等式: cos A(cos B cos C)≤(2×6~(1/2))/9,(1) sin A(sin B sin C)≤(8×3~(1/2))/9,(2) sin A(cos B cos C)≤(8×3~(1/2))/9.(3)  相似文献   

5.
本刊1993年第2期周才凯《一个三个不等式的加强及其它》(以下简称原文)中有两处错误,现摘录如下: 在△ABC中,对不等式ctgA+ctgB+ctgC≥1/3 (3+12R/r)~(1/2). (7)(其中R、r分别是△ABC外接圆和内切圆半径),作角变换:A→π/2-A/2,B→π/2-B/2,C→π/2-C/2,则不等式(7)等价于:△ABC中,有  相似文献   

6.
一个新发现的三角不等式   总被引:2,自引:2,他引:0  
苏张延卫、陕西苟春鹏两位老师分别证明 3以下三角不等式 :在△ ABC中 ,有sin A 2 sin B2 3sin C3≤ 3,(1)cos A 2 cos B2 3cos C3≤ 3 3 . (2 )受文 [1]的启发 ,本文作者证得一个类似的新结果 :cot A 2 cot B2 3cot C3≥ 6 3. (3)其实 ,我们有下述定理 在△ABC中 ,对 k≥ 1有cot Ak 2 cot B2 k 3cot C3k≥ 6 cotπ6 k,(4 )等号成立当且仅当 A=π6 ,B=π3.证明 若 x>0 ,y>,且 x y<π,则cotx coty=sin(x y)sinxsiny=2 sin(x y)cos(x- y) - cos(x y)≥ 2 sin(x y)1- cos(x y) =2 cotx y2 .∴cot AR 2 cot B2 …  相似文献   

7.
一个三角形中不等式的简证及应用   总被引:2,自引:2,他引:0  
在△ABC中,求证: sin2A+sin2B+sin2C≤9/4.(1) 证明 由柯西不等式,得 sin2C=sin2(A+B) (sin Acos B+sin Bcos A)2 ≤(sin2A+sin2 B)(cos2+cos2B), 从而由二元均值不等式得 sin2A+sin2B+sin2C≤(sin2A+sin2B)(cos2A+cos2B+1)≤[(sin2A+sin2B)+(cos2A+cos2B+1)/2]2=9/4.得证.  相似文献   

8.
定理 设△ ABC的内心为 I,R,R1 ,R2 ,R3 分别是△ABC,△IBC,△ICA,△IAB的外接圆半径 ,则有R1 +R2 +R3 ≤ 3R,(1)R1 · R2 · R3 ≤ R3 . (2 )当且仅当△ ABC为正三角形时 ,(1)、(2 )取图 1等号 .证明 如图1,设 BC=a,CA=b,AB =c,因 I是△ABC的内心 ,则有sin∠ BIC=sin(180°- B+C2 ) =cos A2 .(3)由正弦定理及 (3)式可得R1 =a2 sin∠ BIC=2 Rsin A2 cos A2=2 Rsin A2 .同理可得R2 =2 Rsin B2 ,R3 =2 Rsin C2 .结合熟知的三角不等式sin A2 +sin B2 +sin C2 ≤ 32 及sin A2 sin B2 sin C2 ≤ 18,可得R1 +R2 +R…  相似文献   

9.
原题1在△ABC中,对λ≥1,求证:tan(A/λ)+2tan(B/2λ)+3tan(C/3λ)≥6tan(π/6λ),当且仅当A=π/6,B=π/3时等号成立.原证明如下:当α>0,β>0且α+β<π时,有:tanα+tanβ=(sinαcosβ+cosαsinβ)/(cosαcosβ)=(sin(α+β))/(cosαcosβ)  相似文献   

10.
杨卫剑  计惠方 《高中生》2015,(12):32-33
一、任意三角形的“不等”关系在任意三角形ABC中,内角A,B,C所对的边分别为a,b,c,一般“不等”关系有:①0B>C(?)a>b>c(?)sin A>sin B>sin C.例1在△ABC中,若sin,A=3/5,cos B=5/(13),求cos C的值.解由cos B=5/(13),可知0相似文献   

11.
我们知道,在△ABC中,若A,B,C为三角形的三内角,则有: sinA sinB sinC≤3(3~(1/2))/2=3sinπ/3。 本短文将利用平几知识,给出如下推广: 定理 在△ABC中,若A,B,C为三角形的内角,则有:  相似文献   

12.
用抽屉原理巧证一个三角不等式   总被引:1,自引:1,他引:0  
文[1]用柯西不等式及二元均值不等式证明了如下熟知的三角不等式: 在△ABC中,有 sin2A+sin2B+sin2C≤94.(1) 今利用抽屉原理给出(1)式一个简证.  相似文献   

13.
在△ABC中我们有以下一组常见不等式: (1) sin2A sin2B sin2C≤(9)/(4); (2) sin A sin B sin C≤(33)/(2); (3) sin Asin Bsin C≤(33)/(8); (4) cos Acos Bcos C≤(1)/(8); (5) cos2A cos2B cos2C≥(3)/(4).等号当且仅当△ABC为正三角形时取得.  相似文献   

14.
设A、B、C表示ΔA BC的三个内角,∑表示循环和,我们有定理在△ABC中,有cos sin cos222∑B C≤∑A,(1)cos sin cos222∑A C≤∑A,(1')sin sin1sin22∑A B≤∑A,(2)sin sin1sin22∑A C≤∑A.(2')当且仅当△ABC为正三角形时等号成立.证明不失一般性,无妨设A≤B≤C,由A,B,C为ΔA BC的三个内角,则,,222A B C∈(0,)2π.由于在区间(0,π/2)内的正弦函数和余弦函数均具有单调性,则0sin sin sin1222相似文献   

15.
证法 1 如图1,设∠BAD=α,∠ CAD=β(0 <α,β <π2 ) ,过 B作BD⊥ AD交 AC于C,则有cosα=ADAB,cosβ=ADAC.又∵S△ B A C=S△ B A D+S△ D A C,∴ 12 · AB· AC· sin(α+β) =12 AB·AD· sinα+12 AD· AC· sinβ.两边同时除以 12 AB·AC,可得sin(α+β) =ADAC·sinα+ADAB· sinβ=cosβ· sinα+cosα· sinβ.运用诱导公式 ,易证α,β不是锐角时 ,式子仍然成立 .图 2证法 2 如图2 ,设∠BAD=α,∠DAC=β(0 <α,β <π2 ) ,作 BD⊥AD交 AC于 C,作BE⊥ AC于 E,则有 ADAC=cosβ,BDAB=sinα,ADAB=…  相似文献   

16.
题目:已知a、b、c是锐角三角形ABC的三个内角A、B、C所对的三边,tg1/2A=tg~3 1/2 C,sinBcosC=sin(C-B),并且a、b、c、成等比数列,试证明△ABC是正三角形。有一本书给出的解答提示如下:“先由已知条件和A+B+C=π导出B=1/3π,再由余弦定理证明 a=c,则△ABC是正三角形”。其实,这道题是不妥的。为了便于分析,笔者根据以上提示猜测其证明过程为: 由已知 sinB·cosC=sin(C-B) 得 sinB·cosC=sinCcosB-cosCsinB化简得 2sniB·cosC=sinC·cosB ①  相似文献   

17.
1991年3月,重庆第117中学何德岳老师发现了一个新的几何不等式:在△ABC中,有: sin~2 A/2+sin~2B/2+sin~2C/2 ≤1/4 3~(1/2)etg A/2etg B/2etg C/2etg.(1) 1992年10月,宁波大学陈计先生得到不等式(1)的一个加强形式:在△ABC中,有:  相似文献   

18.
△ABC中的许多不等式,如 sinA+sinB+sinC≤3 3~(1/2)/2, cosAcosBcosC≤1/8, sinA/2+sinB/2+sinC/2≤3/2, cosA/2cosB2/cosC/2≤3 3~(1/2)/8 , sin~2A+sin~2B+sin~1C≥2 3~(1/2)sinAsinBsinC等等,均可统一于以下两个不等式(因本文将给出较一般的结果,故推导过程从略): 设x,y,z∈R,A,B,C为△ABC的内角,则 (1)x~2+y~2+z~2 ≥2(xycosC+yzcosA+zxcosB), (2)x~2+y~2+z~2 ≥2 3~(1/2)/3(xysinC+yzsinA+zxsinB), 本文将上述不等式(1)与(2)推广为: 若A,B,C,x,y,z均为实数,且A+B+C=π,n∈Z,则  相似文献   

19.
文[1]给出了如下不等式:在△ABC中,有cosA.cos~2B/2cos~3C/3≤27/64①.经类比探究,笔者得到了一个上述不等式的"姊妹不等式":在△ABC中,有sinAsin~2B/2sin~3C/3≤1/64②,当A=B/2=C/3时等号成立.证明∵sinAsinB/2=-1/2[cos(A+b/2)-cos(A-B/2]  相似文献   

20.
在△ABC中,有常见不等式 cosAcosBcosC≤1/8 ①, sin(A/2)sin(B/2)sin(C/2)≤1/8 ②, 本文将指出①②两式左端的大小关系,有  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号