首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The purpose of this study was to investigate the validity of a smartphone app to measure biomechanical barbell parameters during the snatch. Ten collegiate NCAA division I athletes performed two repetitions each at 40, 50, 60, 70, and 80% of their 1-repetition maximum snatch. Barbell motions were simultaneously recorded with a motion capture system and the smartphone app. The motion capture system recorded the 3-D position of a reflective marker attached to the end of the barbell while the smartphone app was used to record sagittal plane video and track the shape of the weight plate from which the barbell center was derived. Peak forward (PFD) and backward (PBD) displacements and peak vertical displacement (PVD) and velocity (PVV) were calculated from both sets of data. Significant, strong to very strong Pearson’s product-moment correlation coefficients between both systems were noted for all parameters (r = 0.729–0.902, all p < 0.001). Small significant biases between systems were observed for PVD (ES = 0.284, p < 0.001) and PFD (ES=0.340, p < 0.01), while trivial to small, non-significant biases were observed for PBD (ES = 0.143) and PVV (ES = –0.100). Collectively, the results suggest that the app can provide biomechanical data of barbell motions similar to a 3-D motion capture system.  相似文献   

2.
The purpose of this investigation was to analyze the validity and reliability of an iPhone app (named: Dorsiflex) for the measurement of weight-bearing ankle dorsiflexion. To do this, twelve healthy participants (age=28.6±2.3 years) performed a weight-bearing lunge test with each leg in five separate occasions, while dorsiflexion angle was simultaneously registered using a professional digital inclinometer and the Dorsiflex iPhone app, which was specifically developed for this study. A total of 120 angles measured both with the digital inclinometer and the app were then compared for validity, reliability and accuracy purposes using several statistical tests. There was an almost perfect correlation between the digital inclinometer and the Dorsiflex app for the measurement of ankle dorsiflexion (r=0.989, 95% CI=0.986-0.993, SEE=0.48º), with trivial, non-significant differences between devices (SMD=0.17, p=0.10). When analyzing the reliability of the app for the measurement of five different trials for each participant, similar coefficients of variation (CV) were observed in comparison with those obtained with the digital inclinometer (Dorsiflex app: CV=5.1±2.3 %; Digital inclinometer: CV=4.9±2.5 %). The results of the present study show that weight-bearing ankle dorsiflexion can be easily, accurately, and reliably evaluated using the Dorsiflex iPhone app.  相似文献   

3.
ABSTRACT

The aim of the present investigation was to analyze the validity and reliability of a novel iPhone app (CODTimer) for the measurement of total time and interlimb asymmetry in the 5 + 5 change of direction test (COD). To do so, twenty physically active adolescent athletes (age = 13.85 ± 1.34 years) performed six repetitions in the COD test while being measured with a pair of timing gates and CODTimer. A total of 120 COD times measured both with the timing gates and the app were then compared for validity and reliability purposes. There was an almost perfect correlation between the timing gates and the CODTimer app for the measurement of total time (r = 0.964; 95% Confidence interval (CI) = 0.95–1.00; Standard error of the estimate = 0.03 s.; p < 0.001). Moreover, non-significant, trivial differences were observed between devices for the measurement of total time and interlimb asymmetry (Effect size < 0.2, p > 0.05). Similar levels of reliability were observed between the timing gates and the app for the measurement of the 6 different trials of each participant (Timing gates: Intraclass correlation coefficient (ICC) = 0.651–0.747, Coefficient of variation (CV) = 2.6–3.5%; CODTimer: ICC = 0.671–0.840, CV = 2.2–3.2%). The results of the present study show that change of direction performance can be measured in a valid, reliable way using a novel iPhone app.  相似文献   

4.
Abstract

An analysis system for barbell weightlifting exercises is proposed to record reliable performance and neuromuscular responses. The system consists of surface electromyography (sEMG) synchronized with electrogoniometry and a barbell position transducer. The purpose of this study was to establish the reliability of the three components of the system. Nine males (age 28.9 ± 4.8 years, mass 85.7 ± 15.1 kg) performed squat exercise at three loads on three separate trial days. A data acquisition and software system processed maximal knee angle (flexion), mean power for the concentric phase of squat exercise, and normalized root mean square of the vastus lateralis. Inter-trial coefficients of variation for each variable were calculated as 5.3%, 7.8%, and 7.5% respectively. In addition, knee joint motion and barbell displacement were significantly related to each other (bar displacement (m) = 1.39–0.0057 × knee angle (degress), with goodness-of-fit value, r 2 = 0.817), suggesting knee goniometry alone can represent the kinematics of a multi-joint squat exercise. The proven reliability of the three components of this system allows for real-time monitoring of resistance exercise using the preferred training methods of athletes, which could be valuable in the understanding of the neuromuscular response of elite strength training methods.  相似文献   

5.
The purpose of this investigation was to analyse the concurrent validity and reliability of an iPhone app (called: My Jump) for measuring vertical jump performance. Twenty recreationally active healthy men (age: 22.1 ± 3.6 years) completed five maximal countermovement jumps, which were evaluated using a force platform (time in the air method) and a specially designed iPhone app. My jump was developed to calculate the jump height from flight time using the high-speed video recording facility on the iPhone 5 s. Jump heights of the 100 jumps measured, for both devices, were compared using the intraclass correlation coefficient, Pearson product moment correlation coefficient (r), Cronbach’s alpha (α), coefficient of variation and Bland–Altman plots. There was almost perfect agreement between the force platform and My Jump for the countermovement jump height (intraclass correlation coefficient = 0.997, P < 0.001; Bland–Altman bias = 1.1 ± 0.5 cm, P < 0.001). In comparison with the force platform, My Jump showed good validity for the CMJ height (= 0.995, P < 0.001). The results of the present study showed that CMJ height can be easily, accurately and reliably evaluated using a specially developed iPhone 5 s app.  相似文献   

6.
Physical activity benefits for disease prevention are well-established. Smartphones offer a convenient platform for community-based step count estimation to monitor and encourage physical activity. Accuracy is dependent on hardware–software platforms, creating a recurring challenge for validation, but the Apple iPhone® M7 motion co-processor provides a standardised method that helps address this issue. Validity of the M7 to record step count for level-ground, able-bodied walking at three self-selected speeds, and agreement with the StepWatchTM was assessed. Steps were measured concurrently with the iPhone® (custom application to extract step count), StepWatchTM and manual count. Agreement between iPhone® and manual/StepWatchTM count was estimated through Pearson correlation and Bland-Altman analyses. Data from 20 participants suggested that iPhone® step count correlations with manual and StepWatchTM were strong for customary (1.3 ± 0.1 m/s) and fast (1.8 ± 0.2 m/s) speeds, but weak for the slow (1.0 ± 0.1 m/s) speed. Mean absolute error (manual–iPhone®) was 21%, 8% and 4% for the slow, customary and fast speeds, respectively. The M7 accurately records step count during customary and fast walking speeds, but is prone to considerable inaccuracies at slow speeds which has important implications for certain patient groups. The iPhone® may be a suitable alternative to the StepWatchTM for only faster walking speeds.  相似文献   

7.
This study analysed the validity and reliability of a new optoelectronic device (Velowin) for the measurement of vertical displacement and velocity as well as to estimate force and mechanical power. Eleven trained males with Mean (SD) age = 27.4 (4.8) years, completed an incremental squat exercise test with 5 different loads (<30–90% of their 1?repetition maximum) while displacement and vertical velocity of the barbell were simultaneously measured using an integrated 3D system (3D motion capture system + force platform) and Velowin. Substantial to almost perfect correlation (concordance correlation coefficient = 0.75–0.96), root mean square error as coefficient of variation ±90% confidence interval ≤10% and good to excellent intraclass correlation coefficient = 0.84–0.99 were determined for all the variables. Passing and Bablock regression methods revealed no differences for average velocity. However, significant but consistent bias were determined for average or peak force and power while systematic and not proportional bias was found for displacement. In conclusion, Velowin, in holds of some potential advantages over traditionally used accelerometer or linear transducers, represents a valid and reliable alternative to monitor vertical displacement and velocity as well as to estimate average force and mechanical power during the squat exercise.  相似文献   

8.
Abstract

The barbell back squat is commonly used by athletes participating in resistance training. The barbell squat is typically performed using standard athletic shoes, or specially designed weightlifting footwear, although there are now a large number of athletes who prefer to squat barefoot or in barefoot-inspired footwear. This study aimed to determine how these footwear influence 3-D kinematics and muscle activation potentials during the barbell back squat. Fourteen experienced male participants completed squats at 70% 1 rep max in each footwear condition. 3-D kinematics from the torso, hip, knee and ankle were measured using an eight-camera motion analysis system. In addition, electromyographical (EMG) measurements were obtained from the rectus femoris, tibialis anterior, gastrocnemius, erector spinae and biceps femoris muscles. EMG parameters and joint kinematics were compared between footwear using repeated-measures analyses of variance. Participants were also asked to subjectively rate which footwear they preferred when performing their squat lifts; this was examined a chi-squared test. The kinematic analysis indicated that, in comparison to barefoot the running shoe was associated with increased squat depth, knee flexion and rectus femoris activation. The chi-squared test was significant and showed that participants preferred to squat barefoot. This study supports anecdotal evidence of athletes who prefer to train barefoot or in barefoot-inspired footwear although no biomechanical evidence was found to support this notion.  相似文献   

9.
Introduction: The Moxy is a novel, cutaneously placed muscle oxygen monitor which claims to measure local oxygen saturation (SmO2) and total haemoglobin (THb) using near-infrared spectroscopy. If shown to be reliable, its data storage and telemetric capability will be useful for assessing localised O2 usage during field-based exercise. This study investigated the reliability of the Moxy during cycling and assessed the correlations between its measurements, whole-body O2 consumption (VO2) and heart rate (HR). Methods: Ten highly trained cyclists performed an incremental, step-wise cycling protocol on two occasions while wearing the Moxy. SmO2, THb, VO2 and HR were recorded in the final minute of each five-minute stage. Data were analysed using Spearman’s Order-Rank Coefficient (SROC), Intraclass Correlation (ICC), and Coefficient of Variance (COV). Significance was set at p?≤?.05. Results: SmO2 showed a ‘strong’ or ‘very large’ correlation between trials (SROC: r?=?0.842–0.993, ICC: r?=?0.773–0.992, p?≤?.01) and was moderately correlated with VO2 and HR (r?=??0.71–0.73, p?≤?.01). SmO2 showed a moderate to high reliability at low intensities, but this decreased as relative exercise intensity increased. THb showed poor correlations between tests and with the other measured variables, but was highly reliable at all power outputs. Conclusions: The Moxy is a reliable device to measure SmO2 at low to moderate intensities, but at higher intensities, greater variation in measurements occurs, likely due to tissue ischaemia or increased movement artefacts due to more frequent muscular contractions. THb has low variation during exercise, and does not appear to be a valid indicator of muscle oxygenation.  相似文献   

10.
ABSTRACT

This study aimed to compare the reliability and magnitude of velocity variables between 3 variants of the bench press (BP) exercise in participants with and without BP training experience. Thirty males, 15 with and 15 without BP experience, randomly performed 3 variants of the BP on separate sessions: (I) concentric-only, (II) fast-eccentric and (III) controlled-eccentric. The mean velocity (MV) and maximum velocity (Vmax) of the concentric phase were collected against 3 loads (≈30%1RM, 50%1RM, and 75%1RM) with a linear velocity transducer. Reliability was high regardless of the variable, BP variant, and load (coefficient of variation [CV] ≤ 4.47%, intraclass correlation coefficient [ICC] ≥ 0.87). The comparison of the CVs suggested a higher reliability for the fast-eccentric BP (8 out of 12 comparisons), followed by the concentric-only BP (5 out of 12 comparisons), and finally the controlled-eccentric BP (never provided a higher reliability). No differences in reliability were observed between experienced (CV ≤ 4.71%; ICC ≥ 0.79) and non-experienced (CV ≤ 6.29%; ICC ≥ 0.76) participants. The fast-eccentric BP provided the highest MV (p < 0.05) and no differences were observed for Vmax. These results support the assessment of movement velocity during the fast-eccentric BP even in participants without experience.  相似文献   

11.
The aim of the present study was to investigate the acute effect of the aerobic exercise volume on maximum strength and strength-endurance performance; and possible causes of strength decrements (i.e. central and peripheral fatigue). Twenty-one moderately trained men were submitted to a maximal incremental test to determine anaerobic threshold (AnT) and maximum dynamic strength (1RM) and strength-endurance (i.e. total volume load [TV]) tests to determine their baseline strength performance. Following, subjects performed six experimental sessions: aerobic exercise sessions (continuous running at 90% AnT) with different volumes (3?km, 5?km or 7?km) followed by 1RM or strength-endurance test in the 45° leg press exercise. Maximum voluntary isometric contraction (MVIC), voluntary activation (VA) level, contractile properties, and electromyographic activity (root mean square [RMS]) of the knee extensor muscles were assessed before and after aerobic exercises and after strength tests. TV was lower after 5?km and 7?km runs than in the control condition (12% and 22%, respectively). Additionally, TV was lower after 7?km than 3?km (14%) and 5?km (12%) runs. MVIC, VA, RMS, and contractile properties were reduced after all aerobic exercise volumes (~8%, ~5%, ~11% and ~6–14%, respectively). Additionally, MVIC, VA, and contractile properties were lower after strength tests (~15%, ~6%, ~9–26%, respectively). In conclusion, strength-endurance performance is impaired when performed after aerobic exercise and the magnitude of this interference is dependent on the aerobic exercise volume; and peripheral and central fatigue indices could not explain the different TV observed.  相似文献   

12.
Abstract

The influence of speed on trunk exercise technique is poorly understood. The aim of this study was to analyse the effect of movement speed on the kinematics and kinetics of curl-up, sit-up and leg raising/lowering exercises. Seventeen healthy, recreationally trained individuals (13 females and 4 males) volunteered to participate in this study. Four different exercise cadences were analysed: 1 repetition/4 s, 1 repetition/2 s, 1 repetition/1.5 s and 1 repetition/1 s. The exercises were executed on a force plate and recorded by three cameras to conduct a 3D photogrammetric analysis. The cephalo-caudal displacement of the centre of pressure and range of motion (ROM) of six joints describing the trunk and hip movements were measured. As sit-up and curl-up speed increased, hip and knee ROM increased. Dorsal-lumbar and upper trunk ROM increased with speed in the curl-up. Faster cadence in the sit-up exercise had minimal effect on trunk ROM: only the upper trunk ROM decreased significantly. In the leg raising/lowering exercise there was a decrease in the pelvic tilt and hip ROM, and increased knee flexion ROM. During higher speed exercises, participants modified their technique to maintain the cadence. Thus, professionals would do well to monitor and control participants' technique during high-speed exercises to maintain performance specificity. Results also suggest division of speed into two cadence categories, to be used as a reference for prescribing exercise speed based on preferred outcome goals.  相似文献   

13.
Jump performance is considered an important factor in many sports. Thus, strategies such as weightlifting (WL) exercises, traditional resistance training (TRT) and plyometric training (PT) are effective at improving jump performance. However, it is not entirely clear which of these strategies can enable greater improvements on jump height. Thus, the purpose of the meta-analysis was to compare the improvements on countermovement jump (CMJ) performance between training methods which focus on WL exercises, TRT, and PT. Seven studies were included, of which one study performed both comparison. Therefore, four studies comparing WL exercises vs. TRT (total n = 78) and four studies comparing WL exercises vs. PT (total n = 76). The results showed greater improvements on CMJ performance for WL exercises compared to TRT (ESdiff: 0.72 ± 0.23; 95%CI: 0.26, 1.19; P = 0.002; Δ % = 7.5 and 2.1, respectively). The comparison between WL exercises vs. PT revealed no significant difference between protocols (ESdiff: 0.15 ± 0.23; 95%CI: ?0.30, 0.60; P = 0.518; Δ % = 8.8 and 8.1, respectively). In conclusion, WL exercises are superior to promote positive changes on CMJ performance compared to TRT; however, WL exercises and PT are equally effective at improving CMJ performance.  相似文献   

14.
This study investigated the validity and reliability of the GymAware PowerTool (GPT). Thirteen resistance trained participants completed three visits, consisting of three repetitions of free-weight back squat, bench press, deadlift (80% one repetition maximum), and countermovement jump. Bar displacement, peak and mean velocity, peak and mean force, and jump height were calculated using the GPT, a three-dimensional motion capture system (Motion Analysis Corporation; 150 Hz), and a force plate (Kistler; 1500 Hz). Least products regression were used to compare agreeability between devices. A within-trial one-way ANOVA, typical error (TE; %), and smallest worthwhile change (SWC) were used to assess reliability. Regression analysis resulted in R2 values of >0.85 for all variables excluding deadlift mean velocity (R2 = 0.54–0.69). Significant differences were observed between visits 3-2 for bench press bar displacement (0.395 ± 0.055 m; 0.383 ± 0.053 m), and deadlift bar displacement (0.557 ± 0.034 m; 0.568 ± 0.034 m). No other significant differences were found. Low to moderate TE (0.6–8.8%) were found for all variables, with SWC ranging 1.7–7.4%. The data provides evidence that the GPT can be used to measure kinetic and kinematic outputs, however, care should be taken when monitoring deadlift performance.  相似文献   

15.
ABSTRACT

The purpose of this study was to examine load-dependent differences in lower-extremity biomechanics between the back squat (BS) and front squat (FS) exercises. Eleven NCAA Division-I athletes performed three repetitions of the BS and FS at loads of 40%, 60%, and 80% of their FS one repetition maximum (FS-1RM). Kinematic and kinetic data were collected during each squat repetition and used to calculate lower extremity peak joint angles and peak net joint moments (NJM). Peak angles and NJM were compared with a 2 × 3 repeated measures ANOVA. Peak hip extensor NJM were greater during the BS at 60% and 80% of FS-1RM. In comparison, peak knee extensor NJM were greater during the FS at 80% of FS-1RM. However, regression-based prediction of NJM at 100% of FS and BS 1RM indicated that at maximal loads, peak knee NJM are (~3%) higher during the BS. The experimental results suggest that when performed at the same absolute load, the BS and FS are characterized by greater respective mechanical demands imposed on the hip and knee extensors muscles groups. However, prediction-based results suggest that the knee extensor NJM demands are comparable when performed at the same relative load (i.e., with respect to each exercise’s RM).  相似文献   

16.
In this study, we assessed the validity and reliability of 5 and 10 Hz global positioning systems (GPS) for measuring instantaneous velocity during acceleration, deceleration, and constant velocity while straight-line running. Three participants performed 80 running trials while wearing two GPS units each (5 Hz, V2.0 and 10 Hz, V4.0; MinimaxX, Catapult Innovations, Scoresby, VIC, Australia). The criterion measure used to assess GPS validity was instantaneous velocity recorded using a tripod-mounted laser. Validity was established using the standard error of the estimate (± 90% confidence limits). Reliability was determined using typical error (± 90% confidence limits, expressed as coefficient of variation) and Pearson's correlation. The 10 Hz GPS devices were two to three times more accurate than the 5 Hz devices when compared with a criterion value for instantaneous velocity during tasks completed at a range of velocities (coefficient of variation 3.1-11.3%). Similarly, the 10 Hz GPS units were up to six-fold more reliable for measuring instantaneous velocity than the 5 Hz units (coefficient of variation 1.9-6.0%). Newer GPS may provide an acceptable tool for the measurement of constant velocity, acceleration, and deceleration during straight-line running and have sufficient sensitivity for detecting changes in performance in team sport. However, researchers must account for the inherent match-to-match variation reported when using these devices.  相似文献   

17.
Objectives: To investigate the effects that high-velocity, low-load (HVLL) and low-velocity, high-load (LVHL) resistance exercise, performed once or twice-weekly, have on indices of functional performance (primary outcome), maximal strength, and body composition (secondary outcomes) in older adults.

Methods: In a randomised, controlled, multi-armed, parallel design, 54 moderately-highly active, but resistance exercise naïve older adults (aged 60–79 years), attended baseline and post-10-week intervention assessment sessions. Physical and functional assessments were completed, and predicted one-repetition maximums (1-RM) were obtained for eight exercises. Participants were then randomised into one of five conditions: HVLL once-weekly (HVLL1: n?=?11) or twice-weekly (HVLL2: n?=?11), LVHL once-weekly (LVHL1: n?=?10) or twice-weekly (LVHL2: n?=?11), no-exercise control condition (CON: n?=?11). The HVLL conditions completed 3 sets of 14 repetitions at 40% 1-RM and the LVHL conditions, 3 sets of 7 repetitions at 80% 1-RM. In total, 50 participants completed all testing and were included in analyses.

Results: Only LVHL2 improved 30-sec chair stand performance (p?=?.035; g?=?0.89), arm curls (p?=?.011; g?=?1.65) and grip-strength (p?=?.015; g?=?0.34) compared to CON. LVHL2 improved maximal strength compared to CON for 7/8 exercises (p?p?Conclusion: Possibly due to the lower intensity nature of the HVLL conditions, LVHL, twice-weekly was most beneficial for improving functional performance and strength in moderately-highly active older adults. Therefore, we recommend that exercise professionals ensure resistance exercise sessions have sufficient intensity of effort and volume, in order to maximise functional performance and strength gains in older adults.  相似文献   

18.
The purpose of this study was to investigate the relationship between movement velocity and relative load in three lower limbs exercises commonly used to develop strength: leg press, full squat and half squat. The percentage of one repetition maximum (%1RM) has typically been used as the main parameter to control resistance training; however, more recent research has proposed movement velocity as an alternative. Fifteen participants performed a load progression with a range of loads until they reached their 1RM. Maximum instantaneous velocity (Vmax) and mean propulsive velocity (MPV) of the knee extension phase of each exercise were assessed. For all exercises, a strong relationship between Vmax and the %1RM was found: leg press (r2adj = 0.96; 95% CI for slope is [?0.0244, ?0.0258], P < 0.0001), full squat (r2adj = 0.94; 95% CI for slope is [?0.0144, ?0.0139], P < 0.0001) and half squat (r2adj = 0.97; 95% CI for slope is [?0.0135, ?0.00143], P < 0.0001); for MPV, leg press (r2adj = 0.96; 95% CI for slope is [?0.0169, ?0.0175], P < 0.0001, full squat (r2adj = 0.95; 95% CI for slope is [?0.0136, ?0.0128], P < 0.0001) and half squat (r2adj = 0.96; 95% CI for slope is [?0.0116, 0.0124], P < 0.0001). The 1RM was attained with a MPV and Vmax of 0.21 ± 0.06 m s?1 and 0.63 ± 0.15 m s?1, 0.29 ± 0.05 m s?1 and 0.89 ± 0.17 m s?1, 0.33 ± 0.05 m s?1 and 0.95 ± 0.13 m s?1 for leg press, full squat and half squat, respectively. Results indicate that it is possible to determine an exercise-specific %1RM by measuring movement velocity for that exercise.  相似文献   

19.
Abstract

The aim of this study was to assess the validity (Study 1) and reliability (Study 2) of a novel intermittent running test (Carminatti's test) for physiological assessment of soccer players. In Study 1, 28 players performed Carminatti's test, a repeated sprint ability test, and an intermittent treadmill test. In Study 2, 24 players performed Carminatti's test twice within 72 h to determine test–retest reliability. Carminatti's test required the participants to complete repeated bouts of 5 × 12 s shuttle running at progressively faster speeds until volitional exhaustion. The 12 s bouts were separated by 6 s recovery periods, making each stage 90 s in duration. The initial running distance was set at 15 m and was increased by 1 m at each stage (90 s). The repeated sprint ability test required the participants to perform 7 × 34.2 m maximal effort sprints separated by 25 s recovery. During the intermittent treadmill test, the initial velocity of 9.0 km · h?1 was increased by 1.2 km · h?1 every 3 min until volitional exhaustion. No significant difference (P > 0.05) was observed between Carminatti's test peak running velocity and speed at VO2max (v-VO2max). Peak running velocity in Carminatti's test was strongly correlated with v-VO2max (r = 0.74, P < 0.01), and highly associated with velocity at the onset of blood lactate accumulation (r = 0.63, P < 0.01). Mean sprint time was strongly associated with peak running velocity in Carminatti's test (r = ?0.71, P < 0.01). The intraclass correlation was 0.94 with a coefficient of variation of 1.4%. In conclusion, Carminatti's test appears to be avalid and reliable measure of physical fitness and of the ability to perform intermittent high-intensity exercise in soccer players.  相似文献   

20.
Abstract

Previous studies have shown that the start plays a critical role in sliding events and explains more than 55% of the variance of the final time in luge. Experts evaluate the contribution of the arm strokes to be 23% of the total starting performance. The aim of the present study was to develop a measurement and feedback training tool (Speedpaddler) for the arm strokes of high-performance luge athletes. The construction is an aluminium alloy framework with a customary belt conveyor system, which is driven by two synchronized servo motors. Training is possible with constant speeds up to 12 m · s?1 or several speed curves, which simulate the acceleration of different luge tracks. The construction facilitates variations in the inclination and speed of the conveyor belts and thereby the resistance and movement speed. If the athlete accelerates the conveyor belts during arm-paddling, the torque of the motors decreases. Torque measurements and high-speed video offer valuable insights into the several technique criteria. Comparisons of arm-paddle cycle durations on ice and on the Speedpaddler with 18 luge athletes (national team and juniors) showed no statistical differences. The Speedpaddler might be a useful tool to improve starting performance all year round.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号