首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
定理 设ai,bi∈R+,i =1 ,2 ,… ,n .m ,n∈N ,∑bmi =∑ni=1bmi =1 ,p =mm +n,则∑ aibni≥ (∑api) 1p.①证明 :①等价于∑api/ (∑ aibni) p=∑ (ai∑ai/bni) p≤ 1 .②记Ai=ai/bni,则②的中间式等于∑ (Aibni∑Ai) p=∑ [Ami(bmi) n(∑Ai) m]1m +n≤∑ (mAi∑Ai+nbmi) / (m +n) =m +n∑bmim +n =1 .等式当且仅当 Ai∑Ai=bmi(i=1 ,2 ,… ,n) ,即 a1bm +n1=… =anbm +nn时成立 .局部对称权方和不等式@石长伟$陕西省西安市大华中学1 杨克昌.权方和不等式.数学通讯,1982,6…  相似文献   

2.
文 [1]中黄毅老师给出了柯西不等式的一个变式 ,并进行推广 ,得到定理 1 对于由任意正实数构成的 m个数组 a1 i,a2 i,… ,am i( i =1,2 ,… ,n) ,有不等式∑ni=1( a1 ia2 i… am i) 1m ≤( ∑ni =1a1 i .∑ni=1a2 i… ∑ni=1am i) 1m成立 ,当且仅当 a1 1 ∶ a1 2 ∶…∶ a1 n =a2 1 ∶ a2 2 ∶…∶ a2 n=… =am 1 ∶ am 2 ∶…∶ am n时等号成立 .笔者经过研究发现 ,利用定理 1,合理地选择数组 ,能使中数期刊上的一类根式和下确界不等式得到简单的证明 ,并且能得到一个一般性结论 .例 1 已知 a,b∈ R+ ,a +b =1,求证a +12 +b +12 >62 +22…  相似文献   

3.
1柯西不等式的基本形式及推广由文献知柯西不等式(cauchy)表述为:对任意a1,a2…,aa;b1,b2…ba∈R,有(a1b1 a2b2 … anbn)2(a21 a22 …a2n)(b21 b22 …b2n),当且仅当a1b1=a2b2=A=anbn时,等号成立(简记为∑ni=1aibj2n∑i=1a2i∑ni=1b2i).柯西不等式有着非常广泛的应用,下面先介绍  相似文献   

4.
关于分式不等式的证明 ,人们已总结了不少方法 .本文利用柯西 (Cauchy)不等式的一种变式再给出一种证法 ,这种证法常被人们所忽视 ,然而它在证明一类分式不等式时却十分凑效 ,现介绍如下 ,以供参考 .柯西不等式的变式 设ai∈R ,bi∈R(i=1,2 ,… ,n) ,则    ( ni=1aibi) 2 ≤ ( ni=1ai) ( ni=1aib2 i) ,( )等号成立当且仅当b1=b2 =… =bn.由柯西不等式易知不等式 ( )成立 ,证明从略 .为书写方便 ,用 表示循环和 .例 1 已知x ,y ,z∈R ,k为常数 ,k∈R ,求证 xky z ykz x zkx …  相似文献   

5.
柯西不等式:设a1,a2,…,an,b1,b2,…,bn∈R,则(a12+a22+…+a2n)(b12+b22+…+b2n)≥(a1b1+a2b2+…+anbn)2,当且仅当bi=0(i=1,2,…,n)或存在一个数k,使得ai=kbi(i=1,2,…,n)时,等号成立.柯西不等式具有对称和谐的结构特征,应用关键在于构造两组数ai,bi(i=1,2,…,n),进行合理的变形,找准解  相似文献   

6.
不等式的证明是中学数学的一个难点,分式不等式的证明更为困难.本文提供了利用均值不等式配对证明一类分式不等式的思路. 一、如果不等式是形如sum form n to i=1 Ai2/Bi≥M的形式,且Ai,Bi(i=1,2,…,n),M均为正数,则可对Ai2/Bi配上Bi·P,成对利用均值不等式和不等式的基本性质证明. 例1 设a,b,c∈R+,求证:a2/(b+c)+b2/(c+a)+c2/(a+b)≥(a+b+c)/2. 证明:由a2/(b+c)+(b+c)/4≥a,b2/(c+a)+(c+a)/4≥b,c2/(a+b)+(a+b)/4≥c.上面三式相加得求证不等式.  相似文献   

7.
本文推广了文献[1]、[3]给出的不等式,得到以下结果:(1)设Ai(i=1,2,…,k)都是n阶正定或半正定厄米特矩阵,p 1n,则|A1+…+Ak|p |A1|+…+|Ak|p;(2)设Ai,Bi,…,Ci(i=1,2,…,k)都是n阶正定或半正定厄米特矩阵,α,β…,r都是正实数,且α+β+…+r 1Ai|α·|Ai|α·|Bi|β…|Ci|r |∑kn,则∑ki=1i=1Bi|β…|∑kCi|r.|∑ki=1i=1  相似文献   

8.
柯西不等式为:(a1b1 a2b2 … anbn)2≤(a21 a22 … a2n)(b21 b22十… b2n).其中ai,bi∈R(i=1,2,…,n).当且仅当a1/b1=a2/b2=…=an/bn时取"=",(约定ai=0时,bi=0,i=1,2,…,n).对于许多不等式问题,若善于运用柯西不等式及其等价形式,则往往会使一些棘手的问题变得简单明了.关键是构造适合不等式的条件,并能根据问题探索其等价形式.  相似文献   

9.
设ai、bi∈R(i=1,2,…,n),则(n∑i=1a2i·n∑i=1b2i≥(n∑i=1aibi)2),等号当且仅当(a1/b1=a2/b2)=…=an/bn时成立,这就是著名的柯西不等式.若在此不等式中作如下代换:令ai=(√xi),bi=(√yi),即得如下定理:  相似文献   

10.
柯西不等式的再推广   总被引:1,自引:0,他引:1  
黄毅老师在文 [1]中给出了柯西不等式的一个变形及其推广 ,本文在此基础上作进一步的推广 .引理 1(赫尔德不等式 )已知 ai,bi ∈ R+ ,i = 1,2 ,… ,n且α +β =1,1)若αβ >0 ,则∑ni=1aαibβi ≤ ( ∑ni=1ai)α( ∑ni=1bi)β2 )若αβ <0 ,则∑ni=1aαibβi ≥ ( ∑ni=1ai) α( ∑ni=1bi) β引理 2 已知 xi,yi ∈ R+ ,i =1,2 ,… ,n1)若 r >1或 r <0 ,则∑ni=1xiyri ≥ ( ∑ni=1yi) r( ∑ni =1x 11 -ri ) 1 -r2 )若 0 相似文献   

11.
笔者的解题分析文章 ,大多是结合现实情景 ,从“怎样学会解题”(从而怎样学会数学 )的角度谈解题思路的探求、解题过程的改进、解题成果的扩大 ,注重心路的历程和数学的特征 .本文将通过柯西不等式经典证明的分析 ,提炼出一个数量关系证明的程序———演算两次 .1 案例分析———柯西不等式证明的理解1.1 柯西不等式证明的传统认识———判别式法例 1  (柯西不等式 )设a1、a2 、…、an,b1、b2 、…、bn 为两组实数 ,则有不等式∑ni =1 ai2 ∑ni=1 bi2 ≥∑ni=1 aibi 2 .①等号成立当且仅当已知两组数成比例a1b1=a2b2=… =anbn.②(此处约…  相似文献   

12.
设A1x1+A2x2+…+Anxn=S(Ai不全为零,i=1,2,…,n),则成立不等式:x_1~2+x_2~2+…+x_n~2≥S2/A_1~2+A_2~2+…+A_n~2当且仅当x1/A1=x2/A2=…=xn/An时等号成立. 证明记A_1~2+A_2~2+…+A_n~2=M,由基本不等式xi~2+(Ai~2)S2/M2≥2|S|/M|Aixi|≥Aixi 2S/M,从而 xi~2≥Aixi 2S/M-A_i~2 S2/M2(i=1,2,…,n),将以上n个同向不等式相加.得  相似文献   

13.
柯西不等式常活跃在各类考试中,其重要变式:若xi,yi〉0,则 n∑i=1 yi^2/xi≥(n∑i=1yi)^2/n∑i=1xi(*) 当且仪x1/yi=x2/y2=…=xn/yn时等号成立.  相似文献   

14.
众所周知,著名的算术──几何平均值不等式、柯西不等式有着十分广泛的应用,许多书刊都进行了深入研究.然于国内的书刊似乎很少见到专文研究Aczel不等式应用的文章,其实Aczel不等式的应用也很广泛,它是一批新老不等式的综合.一、Aczel不等式定理设a、a_2∈R,b、b_i∈R(i=1,2,…,当且仅当a_i/b_i=a/b(i=1,2,…,n)时时取等号.证明设A=a~2-sunfromi=1tona_i~2,B=ab-sumfromi=1tona_ib_i,构造二次函数∴抛物线y=f(x)与x轴有交点,则a_i/b_i=a/b时(1)取等论.推论设a、a_i∈R,b、b_i∈R(i=1,2,当且仅当a_i/b_i=a/b(i=1,2,…,n)时等号成…  相似文献   

15.
文[1]用均值不等式广泛地解决了一类分式不等式的证明 .本文来介绍这类不等式的一般性证法 ,证明中用到柯西不等式及其推论 .柯西不等式设 ai,bi ∈ R( i =1 ,2 ,… ,n) ,则 ( a21 + a22 +… + a2n) ( b21 + b22 +… + b2n)≥( a1 b1 + a2 b2 +… + anbn) 2推论 设 ai,bi ∈ R+( i =1 ,2 ,… ,n) ,则a21b1+ a22b2+… + a2nbn≥( a1 + a2 +… + an) 2b1 + b2 +… + bn下面结合文 [1 ]中的一例阐述推论的应用 .例 1 设 ∑ni=1xi =1 ,xi ∈ R+,i =1 ,2 ,… ,n,证明 :x11 -x1+ x21 -x2+… + xn1 -xn≥ nn -1左边 =x21x1 -x21+ x22x2 -x22+……  相似文献   

16.
柯西不等式是指:对于ai,bi∈R(i=1,2,…,n),有(n∑i=1 aibi)2≤(n∑i=1 ai2)·(n∑i=1 bi2)i=1.这个不等式以对称的结构,广泛的应用,以及证法的多样性,引起了广泛的兴趣和讨论,下面给出几种新的证法.  相似文献   

17.
柯西不等式:对于任意实数ai,bi(i=1,2,…,n)有 (a1b1 a2b2 … anbn)2≤(a12 a22 … an2)(b12 b22 … bn2),当且仅当ai=kbi(k为常数)时成立. 柯西不等式揭示了任意两组实数积之和的平方与平方和之积间的大小关系,应用十分广泛.下面以近十年来的“希望杯”试题为例,供同学们参考.  相似文献   

18.
柯西不等式是高中数学中重要的不等式之一,它有如下重要变式: 若xi,yi∈R+(i=1,2,...n,n∈N^*,n≥2),则有x^21/y1+x^22/y2+...+x^2n/yn≥(x1+x2+...+xn)^2/y1+y2+...+yn,当且仅当x1/y1=x^2/y2=...=xn/yn时等号成立.  相似文献   

19.
设ai和bi(i=1,2,…,n)都是实数,则(a12 a22 … a2n)(b12 b22 … b2n)≥(a1b1 a2b2 … anbn)2(1)(1)当且仅当ai=kbi(i=1,2,…n)时成立等号,这就是通常所说的哥西不等式.由该不等式很容易得到一个推,实际上,在不等式(1)中,令ai=xiyi,bi=yi(i=1,2…n)得:x12y1 xy222 … yx2nn(y1 y2 … yn)≥(x1 x2 … xn)2xy121 yx222 … yx2nn≥(x1 x2 … xn)2y1 y2 … yn(2)我们把不等式(2)称为哥西不等式推广即:设xi∈R,yj∈R (i=1,2,…,n),则yx121 yx222 … yx2nn≥(xy11 xy22 …… xynn)2,当且仅当xy11=yx22=…=yxnn时成立等号.哥西不等式推广在处理…  相似文献   

20.
本文将柯西不等式:设ai、bi∈R(i=1,2,…,n),则(n∑i=1aibi)2≤(n∑i=1a2i)(n∑i=1b2i).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号