首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一试题概述2004年高考数学全国卷(之一)理科第21题和文科第22题是相同的"解析几何试题",并且依然是融入平面向量知识的:设双曲线C:x~2/a~2-y~2=1(a>0)与直线l:x+y=1相交于两个不同的点A、B.(Ⅰ)求双曲线C的离心率e的取值范围;(Ⅱ)设直线l与y轴的交点为P,且,求  相似文献   

2.
一、将平面向量融入解析几何【例1】(2004年山东卷)设双曲线C:x2a2-y2=1(a>0)与直线l∶x y=1相交于两个不同的点A、B.(I)求双曲线C的离心率e的取值范围;(II)设直线l与y轴的交点为P,且P A=512P B,求a的值.分析:本小题主要考查直线、双曲线的概念和性质,平面向量的运算等知识.解题时先将直线方程代入曲线方程中,整理一下,变成一个关于x的一元二次方程,再使用韦达定理,写出两根之和与之积,最后再根据题目的要求求解.解:(I)由C与l相交于两个不同的点,故知方程组x2y2-y2=1x y=1有两个不同的实数解.消去y并整理得(1-a2)x2 2a2x-2a2=0.①所以…  相似文献   

3.
<正>2018年北京高考数学试题理科第19题:已知抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,QM(向量)=λQO(向量),QN(向量)=μQO(向量),求证:1/λ+1/μ为定值.思考1该试题揭示了抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,QM(向量)=λQO(向量),QN(向量)=μQO(向量),求证:1/λ+1/μ为定值.思考1该试题揭示了抛物线C:y2=4x的一个有  相似文献   

4.
题目 设双曲线C:(x2)/(a2)-y2=1(a>0)与直线l:x y=1相交于两个不同的点A、B. (Ⅰ)求双曲线C的离心率e的取值范围; (Ⅱ)设直线l与y轴的交点为P,且PA=(5)/(12)PB,求a的值.  相似文献   

5.
题目 如图1,已知双曲线C:x2/a2-y=1(a>0)的右焦点F,点A,B分别在C的两条渐近线上,AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点). (Ⅰ)求双曲线C的方程: (Ⅱ)过C上一点P(x0,y0)(y0≠0)的直线l:x0x/a2-y0y=1与直线AF相交于点M,与直线x=3/2相交于点N.证明:当点P在C上移动时,|MF|/|NF|恒为定值.并求此定值.(2014年高考数学江西理试题)  相似文献   

6.
每年高考之前,各种模拟试题纷纷出台,其中也不泛精品.今选登其中部分省市高考模拟试题解析几何部分的题型并加以评析,以飨读者.题一、已知椭圆C:x~2/a~2-y~2b~2=1(a>b>0)上有两点A、B,直线l:y=x m上有两点C、D,若ABCD是正方形,且此正方形外接圆的方程是X~2 y~2-2y-8=0,求椭圆C的方程和直线l的方程.(黑龙江)考查目的:检查解析几何基础知识及圆的性质,考察平面几何知识在解析几何中的运用能力.  相似文献   

7.
2012年全国高考数学福建卷文、理科解析几何试题分别是: 试题1 ,等边△OAB的边长为8√3,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明以PQ为直径的圆恒过y轴上某定点.  相似文献   

8.
<正>1考题呈现题1(2018年高考全国数学卷Ι理19题)设椭圆C:x2/2+y2/2+y2=1的右焦点为F,过点F的直线l与C相交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.题2(2018年高考全国数学卷Ι文20题)设抛物线C:y2=1的右焦点为F,过点F的直线l与C相交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.题2(2018年高考全国数学卷Ι文20题)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线  相似文献   

9.
题目 设双曲线C :x2a2 - y2 =1 (a >0 )与直线l:x y =1相交于两个不同的点A、B .(Ⅰ )求双曲线C的离心率e的取值范围(Ⅱ )设直线l与y轴的交点为P ,且 PA=51 2 PB ,求a的值 .图 1根据课本 p132 1 3题的解法可知 ,该题第 (Ⅰ)问可用反证法求解 .下面给出另一解法 :(Ⅰ )由C和L相交于两个不同的点A、B ,故知方程组x2a2 - y2 =1 ,x y=1 .有两个不同的实数解 ,消去 y并整理得( 1 -a2 )x2 2a2 x- 2a2 =0 .由Δ =4a4 8a2 ( 1 -a2 ) =0得a =2 ,a=0 .  根据图 1知 :方程无解 ,则a>2或a<0 ,且a=1 ,a=2时仅有一解 .所以方程组有两个不同…  相似文献   

10.
向量与角     
1.推导直线的夹角公式设直线l1:A1x B1y C1=0与l2:A2x B2y C2=0,两直线的夹角为α,两直线方向向量的夹角为θ,则α=θ或α=π-θ.因为两直线的方向向量分别为  相似文献   

11.
平面解析几何中“点到直线的距离”公式,除了教材中介绍的两种推导方法之外,还可以利用初中代数中的“求二次函数的极值”方法推出.已知:点P (x_o,y_o),直线 l:Ax+By+C=0(A~2+B~2≠0).求:点 P 到直线 l 的距离.解:设 M(x,y)是直线 l 上的任意一点.∵在直线方程 Ax+By+C=0中,A、B 至少有一个不为零,不妨设 B≠0,则  相似文献   

12.
在解析几何中“求以圆锥曲线中的定点为中点的弦的方程”是直线与圆锥曲线位置关系中重要考点之一,高考中也多次出现.题目:设A、B两点是双曲线C:2x2-y2=2上两点,点N(1,2)是线段AB中点,求直线AB方程.解法1(巧用韦达定理,整体替换):要求过定点N(1,2)的直线AB的方程,关键是求斜率k.设点A(x1,y1),点B(x2,y2),由中点公式知:x1+x2=2,y1+y2=4,再利用韦达定理整体替换构造关于k的方程,求k的值.设直线AB方程为:y=k(x-1)+2,代入双曲线C的方程整理得:(2-k2)x2+2k(k-2)x-k2+4k-6=0.当2-k2≠0时,则Δ=4k2(k-2)2-4(2-k2)(-k2+4k-6)>0,解得k<23且k≠…  相似文献   

13.
<正>1.试题呈现及分析例1 (2022年新高考Ⅱ卷第21题)设双曲线C:■的右焦点为F (2, 0),渐近线方程为■.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A, B两点,点P (x1, y1), Q (x2, y2)在C上,且x1> x2> 0, y1> 0.  相似文献   

14.
俞昕 《教学月刊》2015,(4):42-44
笔者在研究2014年高考试题时,曾对全国大纲卷的第21题进行过一番思考.原题呈现:已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=5/4|PQ|.(I)求C的方程;(II)过F的直线l与C相交于A,B两点,若AB的垂直平分线l′与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程.  相似文献   

15.
平面向量融数、形于一体,具有几何形式与代数形式的“双重身份”,使它成为中学数学知识的一个交汇点和联系多项内容的媒介·用平面向量的知识特别便于研究解析几何中的有关轨迹,夹角,距离及平行与垂直的问题·下面分类介绍向量在解析几何中的应用·一、利用向量求轨迹方程向量的加法适用平行四边形法则,利用向量加法可以解决一些含有平行四边形的解析几何问例题·1已知A(0,5),B(3,4),点M在圆x2+y2=25上运动,求以AB、AM为邻边的平行四边形的另一个顶点P的轨迹方程·解:设P(x,y),M(x0,y0),则A→B=(3,-1),A→M=(x0,y0-5),A→P=(x,y-5)·…  相似文献   

16.
直线恒过定点问题涉及解析几何的所有知识 ,综合性强 ,方法灵活 ,运算复杂 ,对能力要求高 ,因此 ,时常在高考试题和竞赛试题中出现 .笔者在教学过程中总结了以下四种策略 .1 特殊引路找定点对于有些直线恒过定点问题 ,可以先考虑动直线l的特殊情况 ,找出定点P的位置 ,然后证明该定点P在动直线l上 .例 1 已知椭圆 x22 +y2 =1的右准线为l,过椭圆右焦点F的直线与椭圆相交于A、B两点 ,点C在右准线l上 ,且BC∥x轴 ,求证 :直线AC经过定点 .(2 0 0 1年广东高考试题改编 )证明 :如图 1 ,设l⊥x轴 ,垂足为E ,易求得F(1 ,0 ) ,E(2 ,0 ) .当AB…  相似文献   

17.
<正>我们先从2015年上海高考数学文科第22题说起.试题如图1,已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于点A、B和C、D,设AOC的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明  相似文献   

18.
冯涛 《中学教研》2014,(6):37-39
正题目如图1,已知椭圆C1:x2a2+y2b2=1(ab0)和圆C2:x2+y2=b2,圆C2将椭圆C1的长轴三等分,且圆C2的面积为π.椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A,B,直线EA,EB与椭圆C1的另一个交点分别是点P,M.(1)求椭圆C1的标准方程.(2)①设PM的斜率为kPM,直线l的斜率为t,求kPM t的值;②求△EPM面积最大时直线l的方程.(2014年宁波市高三十校联考数学模拟试题  相似文献   

19.
曲线轨迹问题的探求是解析几何的重要内容 ,也是高考的热点问题之一 ,纵观近几年来在高考中出现的轨迹问题 ,其常用的求法有以下几种 :一、直接法例 1  ( 1998年全国理 )如图 ,直线 l1和 l2 相交于点M,l1⊥ l2 ,点 N∈ l1,以 A、B为端点的曲线段 C上任一点到 l2 的距离与到点 N的距离相等 .若△ AM N为锐角三角形 ,|AM|= 17,|AN |=3,且|BN |=6 ,建立适当的坐标系 ,求曲线段 C的方程 .解 :以 l1为 x轴 ,M为原点 ,建立直角坐标系 (如图 ) ,设 A( x A,y A)、B ( x B、y B)、N ( x N,0 ) ,P( x,y)为曲线段 C上任一点 ,则由题意知 P…  相似文献   

20.
20 0 2年高考第 2 0题是这样的 :设 A,B是双曲线 x2 - y22 =1上的两点 ,点 N ( 1 ,2 )是线段 AB的中点 .( )求直线 AB的方程 ;( )如果线段 AB的垂直平分线与双曲线相交于 C,D两点 ,那么 A,B,C,D四点是否共圆 ?为什么 ?本文将第 ( )题的条件一般化 ,探究 A,B,C,D四点共圆的充分必要条件 .命题 设 A,B是双曲线 x2a2 - y2b2 =1 ( a>b>0 )上的两点 ,点 N( x0 ,y0 )是线段 AB的中点 ,线段 AB的垂直平分线与双曲线相交于 C,D两点 ,则 A,B,C,D四点共圆的充分必要条件是 :a2 y0 ± b2 x0 =0 .证明 设 A( x1 ,y1 ) ,B( x2 ,y2 ) ,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号