首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
正函数是中学数学中最为重要的思想方法,一些不等式的证明常常运用函数思想进行求解.下面通过一些典型问题谈谈其在不等式证明中的应用.一、一元不等式的证明对于一元不等式的证明问题可考虑把问题转化为求函数的最大(小)值问题.1.证明不等式f(x)g(x)成立,可设F(x)=f(x)-g(x),问题转化为证明F(x)min0;证明不等式f(x)g(x)成立,可设F(x)=f(x)-g(x),问题转化为证明F(x)max0.例1当x0时,证明:ln(1+x)x-12x2.分析:不等式ln(1+x)x-12x2可化为ln(1+x)-x+  相似文献   

2.
用导数容易证得定理1lnx≤x-1(x>0)(当且仅当x=1时取等号).普通高中课程标准实验教科书《数学·选修2-2·A版》(人民教育出版社2007年第2版)第32页的习题第1题的第(3)小题"证明不等式:ex>1+x(x≠0)"的结论与该不等式是等价的.笔者认为,该不等式因其形式简  相似文献   

3.
不等式的证明方法很多,有时使人觉得扑朔迷离,无从下手或证明太繁而通过联想构造函数,将常量作为变量的瞬时状态置于构造函数的定义域内,利用函数的性质证明不等式,却是十分巧妙有效的方法.本文介绍构造函数证明不等式的几种途径,读者可以体会到用函数思想证明不等式,思路清新、简捷明快.一、利用一次函数的保号性证明不等式例1 (第15届俄罗斯竞赛题)已知x,y,z ∈(0,1),求证:x(1-y) y(1-z) z(1-x) <1.  相似文献   

4.
不等式的证明是国内外数学竞赛中的热点问题 ,尽管这些不等式的形式各异 ,但很多不等式的证明却可以用两个基本不等式而巧妙地得到解决 .本文所述的基本不等式为 :a + b≥ 2 ab(a,b∈ R+ )及a1+ a2 +… + ann ≥ n a1a2 … an(ai ∈ R+ ) .下面看一些具体例子 .1 用 a + b≥ 2 ab(a,b∈ R+ )证明竞赛中不等式  例 1 设 x1,x2 ,x3,… ,xn均为正数 ,求证 :x21x2+ x22x3+ x23x4+… + x2n- 1xn+ x2nx1≥ x1+ x2+… + xn.(1 984年全国高中数学联赛题 )证明 :由基本不等式 a + b≥ 2 ab(a,b∈R+ )得x22x1+ x1≥ 2 x2 ,x23x2+ x2 ≥ 2 x3,… …  相似文献   

5.
《数学通讯》2011年第8期文[1]给出了如下的代数不等式:命题令x i>0,i=1,2,…,n且x 1+x 2+…+x n=1,则有1 x 1+x 22+1 x 2+x 23+…+1 x n+x 21≥n n+1 n 2.笔者利用数学归纳法给出了上述不等式的一个新证明.  相似文献   

6.
用导数证明不等式是证不等式的一种重要方法,证明过程往往简捷、明快,特别是证明超越不等式,更是如鱼得水.证明的第一步要考虑如何构造函数,是证明的关键.若函数构造恰当,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式.本文谈谈在用导数证明不等式时,构造辅助函数的几种常用途径.途径一构造差函数直接作差,即构造差函数,是构造辅助函数的最主要方法.例1求证:不等式x-x22<1n(1+x)0,所以y=f(x)在(0,+∞)上单调递增,因为x>0,且f(x)在…  相似文献   

7.
正本文首先介绍如何构造函数证明两个简单的不等式,在介绍如何构造函数证明复杂的不等式,以及在构造函数时如何如何整体把握.首先介绍两个有用的不等式ex≥x+1,x∈R与lnx≤x-1,x0.这两个不等式不难从图象上看出,注意y=lnx与y=x-1分别是y=ex与y=x+1的反函数,图象关于y=x对称.用导数证明如下:构造函数f(x)=ex-x-1,f'(x)=ex-1.  相似文献   

8.
由于不等式的形式与结构千差万别,因而方法灵活,技巧性强.教材中仅介绍了证明不等式的三种常见方法(比较法、综合法、分析法),为了开阔同学们的视野,本文再举例介绍证明不等式的常见技巧与策略.一、合成把所证不等式分解为几个比较简单的部分不等式,分别证明各个简单的不等式成立,然后再利用同向不等式相加或相乘的性质,得原不等式成立.例1设x1,x2,x3,…,xn是n个正数,求证:x12x2+xx232+xx342+…+xxn2-n1+xxn12≥x1+x2+x3+…+xn.证明∵xx122+x2≥2$xx122·x2"=2x1,同理,xx232+x3≥2x2,…,xxn2-n1+xn≥2xn-1,xxn12+x1≥2xn,∴将上述n个同向不…  相似文献   

9.
在近年的高考试题中,经常会出现以ex与ln x为背景的函数不等式的证明问题,而学生普遍感觉比较困难,下面对此类问题加以探讨,供读者参考.一、以ex为背景的函数不等式例1(2014年福建理科卷20题第(Ⅱ)问)证明:当x>0时,x2相似文献   

10.
第39届IMO预选题的第11题:证明:《中等数学》1999年第5期给出了两种不同的妙证,事实上用均值不等式就能证明.证法1由①+②+③得:上述不等式都是在x=y=z=1时取等号. 当且仅当x=y=z=1时原不等式取等号.证法2由①+②+③得:上述不等式都在x=y=z=1时取等号.当且仅当x=y=z=1时原不等式取等号.一道IMO预选题的两种证法@李来敏$重庆市武隆县中学!408500  相似文献   

11.
近几年高考加强了在知识交汇点上命题的力度,单独解不等式或证明不等式的题目有所减少,而频频出现考查不等式综合应用的试题,这更要引起我们的重视.一、试题评析11不等式与函数【例1】给出一个不等式x2 1 Cx2 C≥1 CC(x∈R)经验证:当C=1,2,3时,对于x取一切实数,不等式都成立.试问:当C取任何正数时,不等式对任何实数x是否都成立?若能成立,请给出证明;若不成立,请求出C的取值范围,使不等式对任何实数x都能成立.解:令f(x)=x2 1 Cx2 C设u=x2 C(u≥C)则f(x)=u2 1u=u 1u(u≥C)f(x)-C 1C=(u 1u)-C 1C=(u-C)(u C-1)u C要使不等式成立,则f(x)…  相似文献   

12.
不等式是高中数学课程中重要的知识内容,它包括不等式的概念、性质,不等式的证明,不等式的解法和一些含有绝对值不等式的解法。而在解不等式时,我们往往误用不等式的性质进行解题,从而造成解题错误。[例1]:(广州市2005年高中毕业考试数学试题———本题由1996年全国高考数学试题改编而成)已知函数f(x)=ax2+bx+c(a,b,c∈R),当x∈[-1,1],时,f(x)1.(1)证明:b1(2)若f(x)的图象经过点(0,-1),(1,1),求a的值。分析:我们不在这里将这一题详解,只是将我们在阅卷过程中发现的错误与同学们共同研究,以防止你们再次发生这样的错误。第(1)小题同学们的错…  相似文献   

13.
高中数学人教版选修2-2"导数及其应用"第32页有这样两道习题: 利用函数的单调性,证明不等式: (3)ex>1+x(x≠0); (4)lnx0). 对于这两个不等式,文[1]已经对它作了研究,本文对这两个不等式做一下拓展并运用它来解答几道高考导数题.  相似文献   

14.
证明形如x1≤x≤x2一类的不等式,如果能构造定比分点来证明,往往别开生面,特别巧妙.具体方法是:把x1,x,x2分别对应数轴上三  相似文献   

15.
<数学教学>2002年第1期刊出了如下一个代数不等式问题. 问题554已知x、y∈R,求证:√x2+y2+√(x-1)2+y2+√x2+(y-1)2≥√2/2(√3-1). 在第2期上给出的解答,运用了单位复数及关于复数模的不等式.本文对(1)先给出一个更为简洁的证明,再作进一步的探讨.  相似文献   

16.
2003年全国高中数学联赛第13题: 设3/2≤x≤5,证明不等式 2((x+1)~(1/2))+((2x-3)~(1/2))+((15-3x)~(1/2))<2(19~(1/2)).这是一道看似平常的问题,但要证明它,须有较好的解题功底,须具有坚实的“双基”.笔者经过深入研究, 归纳出了证明本题的6种思路15种方法,供大家参考.思路1利用重要不等式证法1借助二元均值不等式ab~(1/2)≤a+b/2(a,b∈R+,以下本文所要用到的不等式中,字母均表示正数, 不再一一说明)  相似文献   

17.
在人教教材中有一个不等式ex>1+x(x≠0),利用这个不等式及其变形可以证明不等式或恒成立问题,比直接用导数求解要简单,而且可以避免复杂的求导运算。原形:ex≥1+x当且仅当x=0时,等号成立;变形:ln(x+1)≤x(x>-1)当且仅当x=0时,等号成立;用导数证明很容易,过程略。例1(2013年新课标Ⅱ)已知函数f(x)=ex-ln(x+m)。  相似文献   

18.
在不等式证明问题中,有一类典型的不等式证明问题:设x1,x2,…,xn∈R^ ,证明  相似文献   

19.
一类分式不等式的联想   总被引:3,自引:0,他引:3  
文[1]提出并证明如下分式不等式:问题1已知x、y、z为正实数,求证:x/(2x y z) y/(x 2y z) z/(x y 2z)≤3/4.其后,许多文章给出了该不等式的证明,如文[2]、文[3],笔者再给出一种简单的证法.  相似文献   

20.
2003年全国高中数学联赛第一试13题如下: 设3/2≤x≤5,证明不等式:2√x 1 √2x-3 √15-3x<2√19. 思考与分析1:利用均值不等式可得证法一如下:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号