首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
欧式空间指出:若V是数域F上的一个n维线性空间,α1,α2,…,αn是V的一个基,那么对于V中的任意n个向量β1,β2,…,βn,恰有V的一个线性变换σ,使σ(αi)=βi(i=1,2,…,n);在欧式空间中把它给推广,即在一定的条件下,找到存在一个正交变换σ,使得σ(αi)=βi(i=1,2,…,m)成立的充分必要条件,并给出相关题目的证明。  相似文献   

2.
定义:设V是n维欧氏空间,α1,…,αn是V中的向量组,β1,…,βn也是V中的向量组,我们规定:  相似文献   

3.
如果线性空间V中的向量组α1,α2,…,αr线性无关,且可以被β1,β2,…,βs线性表出,即(α1,α2,…,αr)=(β1,β1,…,βs)Asxr,则秩A=r。这个命题有巧妙的应用。  相似文献   

4.
设V是数域F上的向量空间,{α1,α2,…,αr}与{β1,β2,…,βs)是V的任意两组向量.本文利用线性方程组的理论,给出了计算子空间L(α1,α2,…,αr}∩(β1,β2,…,βs)的基的一般方法.  相似文献   

5.
设y_1,y_2…,y_n独立同分布,EY_1=β,CovY_1=V,这里βεR~m与V:mxm>0均未知,取损失函数为:L(d,β)=(d-β)′(d-β),估计类ζ={sum from i=1 to nL_ζY_i+b;L_ζ为m阶实常方阵;i=1,2,…n,bεR~m},本文在损失L下给出了非齐次线估计在ζ中是β的容许估计的充要条件。  相似文献   

6.
Wielandt-Hoffman定理的推广   总被引:1,自引:0,他引:1  
本文推广了Wielandt-Hoffman定理,得到了如下的结果:设A,B,C均为n×n Hermite矩阵,它们的特征根(从大到小依次排列)分别为α_iβ_iγ_i,(i=1,2,…,n),(i)若B=C-A,则sum i=1 to n (β_i~2)≥sum i=1 to n(γ_i-α_i)~2;(ii)若B=C+A,则sum i=1 to n (β_i~2)≤sum i=1 to n (γ_i+α_i)~2。  相似文献   

7.
1常规中出特例,发现问题近日笔者在讲评空间向量一章数学测试练习题时遇到如下常见的一道向量选择题:题1若A,B,C三点共线,O为平面上任意一点,且OA αOB=βOC,则α-β的值为().(A)1(B)-1(C)41(D)-2.在平面向量学习中,我们曾解决过这样一道命题:“向量OA,OB,OC的终点共线的充要条件是存在实数m,n,且m n=1,使得OC=m OA n OB.”而且我们总结出“若A,B,C三点共线,且OC=m OA n OB,则m n=1”.学生都知道这一命题结论,在平面向量的解题中也经常直接使用该命题,给解决这类问题带来很大方便,根据这一命题题1即有如下简解:因OA αOB=β…  相似文献   

8.
本文推广了文献[1]、[3]给出的不等式,得到以下结果:(1)设Ai(i=1,2,…,k)都是n阶正定或半正定厄米特矩阵,p 1n,则|A1+…+Ak|p |A1|+…+|Ak|p;(2)设Ai,Bi,…,Ci(i=1,2,…,k)都是n阶正定或半正定厄米特矩阵,α,β…,r都是正实数,且α+β+…+r 1Ai|α·|Ai|α·|Bi|β…|Ci|r |∑kn,则∑ki=1i=1Bi|β…|∑kCi|r.|∑ki=1i=1  相似文献   

9.
已知线性空间V的一线性无关组α_1,…,α_m,将它扩充为V的基α_1,…,α_m,一般要先求出β:β不能被α_1,…,α_m线性表出。但也可如次解决:设α_i=(a_(i1),…,a_(in))(i=1,2,…,n),先将矩陈(a_(ij))_(mxn)化成阶梯形,添加一些元素使之成(a_(ij))_(nxn),只要|a_(ij)|≠0,则(a_(ij))_(nxn)的后n—m行即为所添向量。例如,设α_1=(1,4,3,5,7)α_2=(1,3,4,2,3)α_3=(3,5,2,4,1),化成阶梯形后,(a_(ij))_(x)的  相似文献   

10.
李玉玲 《考试周刊》2012,(34):57-58
在立体几何中,我们经常利用空间向量的方法来求两个平面所成的二面角的大小,即在二面角α-l-β中,设平面α的法向量m,,平面β的法向量n,.〈m,,,n〉=θ,则二面角α-l-β的平面角为θ或π-θ,其中cosθ=cos〈,m,n,〉=,m.,n.  相似文献   

11.
柯西不等式 设a1,a2,…,an,b1,b2,…,bn均是实数,则有 (a1b1 a2b2 … anbn)2 ≤(a12 a22 … an2)(b12 b22 … bn2)等号当且仅当ai=λbi(λ为常数,i=1,2,…,n)时成立. 向量形式 设n维向量α(a1,a2,…,an),β(b1,b2,…,bn),则有 α·β≤|α|·|β|,当且仅当α∥β时取等号. 推论1 设a1,a2,…,an,b1,b2,…,bn均是实数,则有(a12 a22 … an2)~(1/2) (b12 b22 … bn2)~(1/2)  相似文献   

12.
考虑一类具有正负系数的时滞微分方程x('t)+1tlntni=1Σpix(tα)i-1tlntni=1Σqix(tβ)i=0,其中0〈αi〈1,0〈βi〈1,pi〉0,qi≥0是常数,证明了方程所有解振动的一个充分条件为αi〈βi,ni=1Σpi〉ni=1Σqi,ni=1Σqilnβiα≤1,ni=1Σ(pi-qi)ln1α〉1e其中α=max{α1,α2,…,αn≤≤}.  相似文献   

13.
<正> 在一般的高等代数里,对于R~n空间里的一组基a_i=(a_i1,a_i2……a_in)(i=1,2,…,n)求向量β=(b_1,b_2…b_n)关于这个基的坐标的方法是: 第一步:求A的逆矩阵A~(-1)  相似文献   

14.
文献[1]中给出了三个彼此等价的向量空间公理化定义,它们分别选用了八条、七条和六条公理构成向量空间定义的公理系统,依次列出如下:(V表示向量空间,P表示数域).定义1中的公理系统选用了如下八条公理:Ⅰ1 α+β=β+α;Ⅰ2 (α+β)+r=α+(β+r);Ⅰ3 V中存在一个元素,记为O,它对于任意α∈V,都有α+O=α,这个元素O称为V的零元素;Ⅰ4 对于V中每个元素α,V中都存在一个元素β,使α+β=0,β称为α的负元素;Ⅱ1 1α=α;Ⅱ2 k(lα)=(kl)α;Ⅱ3 (k+l)α=kα+lβ;Ⅱ4 k(α+β)=kα+kβ.这里α、β、γ∈V,k,L∈P.…  相似文献   

15.
设∑A是E~n中的n维单形:e_1,e_2,…,e_(n+1)分别是∑A的n+1个界面上的单位法向量,令D_1=det(e_1,e_2,…,e_(1-1),e_(1+1),…,e_(n+1)),a_1=arc sin |D_1|,则有:sum from i=1 to n+1 (λ_1sin~2α_1)≤(multiply from i=1 to n+1 (λ_1))(1/n sum from i=1 to n+1 1/(λ_1))~n这里λ_1∈R~+,i=1,2,…,n+1  相似文献   

16.
下面以三角中的几个基本公式 (定理 )的证明为例 ,谈谈向量基础知识在解题中的灵活应用 ,望能增添同学们学习向量知识的兴趣 .【例 1】 证明cos(α+β) =cosαcosβ-sinαsinβ .课本上采用解析法证明这一公式 ,学习向量后 ,运用平面向量的数量积 (内积 )证明公式显得十分简单 ,这种灵活运用新知识解决问题的思想方法毫无疑义是符合新教材编写精神的 .证 :在单位圆O中 ,设∠P1 Ox =α , ∠P2 Ox =-β ,则P1 ,P2 坐标为P1 (cosα ,sinα) ,P2 (cosβ ,sin( -β) ) .即OP1 =(cosα ,sinα) , OP2 =(cosβ ,-sinβ) .∵∠P1 OP2 =α …  相似文献   

17.
程金元 《青海教育》2006,(12):39-40
人教版高二数学(下B)41“页夹角和距离公式”一节中介绍了有关法向量的概念“:如果表示向量a!的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作a!⊥α。如果a!⊥α,那么向量a!就叫平面α的法向量。”但并未就法向量概念的运用作进一步的阐述。事实上,法向量的应用非常广泛,尤其是在求二面角、线面角、点到平面的距离等问题中有着独特作用。教师如果在教学中能有意识地引导学生对法向量概念进行再研究、再探索,就会发现法向量的一些简单性质及其巧妙应用。性质1:若!m⊥面α,n!⊥面β,α∩β=a,则〈m!,n!〉与二面角α-a-β相等…  相似文献   

18.
文[1]给出了赫尔德(Holder)不等式的等价形式: 设{ai},{bi},…,{li}(i=1,2,…,n)为正数列,α,β,…,λ为正数,且δ=α-(β+…λ)≥1,n≥2,则  相似文献   

19.
:设Y1 ,Y2 ,… ,Yn 独立同分布 ,EY1 =β ,DY1 =V ,这里 β∈Rm 与V :mxm >0均未知。取矩阵损失函数L(d ,β) =(d - β) (d - β)′ ,估计类£ =∑ni =1LiYi+b ;Li 为m阶方阵 ,i=1,… ,n ;b∈Rm 。本文在矩阵损失下给出了非齐次线性估计在£中是 β的可容许估计的充要条件  相似文献   

20.
对于某些三角问题 ,若能合理地构造向量 ,利用向量来解 ,往往可使问题得到快捷方便地解决 ,下面举例说明 .一、求角度【例 1】 若α、β∈ ( 0 ,2 ) ,求满足cosα+cosβ-cos(α + β) =32 的α ,β的值 .解 :原等式化为( 1 -cosβ)cosα+sinβsinα =32 -cosβ ①构造向量a =( 1 -cosβ ,sinβ) ,b =(cosα ,sinα) ,则a·b =( 1 -cosβ)cosα+sinβsinα=32 -cosβ ,|a|·|b|= ( 1 -cosβ) 2 +sin2 β· cos2 α+sin2 α= 2 -2cosβ因 (a·b) 2 ≤|a|2 ·|b|2 ,于是有 ( 32 -cosβ) 2 ≤ 2 -2cosβ整理得 (cosβ-12 ) 2 ≤ 0 ,∴c…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号