首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一、配方法例 1 分解因式 :2 x3- x2 z- 4 x2 y 2 xyz 2 xy2- y2 z。解 :原式 =(2 x3- 4 x2 y 2 xy2 ) - (x2 z- 2 xyz y2 z) =2 x(x2 - 2 xy y2 ) - z(x2 - 2 xy y2 ) =(x2 -2 xy y2 ) (2 x- z) =(x- y) 2 (2 x- z)。二、拆项法例 2 分解因式 :x3- 3x 2。解 :原式 =x3- 3x- 1 3=(x3- 1 ) - (3x- 3)= (x- 1 ) (x2 x 1 ) - 3(x- 1 ) =(x- 1 ) 2 (x 2 )。注 :本题是通过拆常数项分解的 ,还可通过拆一次项或拆三次项分解 ,读者不妨一试。三、添项法例 3 分解因式 :x5 x 1。解 :原式 =(x5 - x2 ) x2 x 1 =x2 (x3- 1 ) (x2 x 1 ) =x2 (…  相似文献   

2.
一、配方法例1分解因式:2x3-x2z-4x2y+2xyz+2xy2-y2z解:原式=(2x3-4x2y+2xy2)-(x2z-2xyz+y2z)=2x(x2-2xy+y2)-z(x2-2xy+y2)=(x2-2xy+y2)(2x-z)=(x-y)2(2x-z)·二、拆项法例2分解因式:x3-3x+2·解:原式=x3-3x-1+3=(x3-1)-(3x-3)=(x-1)(x2+x+1)-3(x-1)=(x-1)(x2+x-2)·注:本题是通过拆常数项分解的,还可通过拆一次项或拆三次项分解,读者不妨一试·三、添项法例3分解因式:x5+x+1·解:原式=(x5-x2)+x2+x+1=x2(x3-1)+(x2+x+1)=x2(x-1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3-x2+1)·四、主元法例4分解因式:2a2-b2-ab+bc+2ac·解:以a为主元,将原式整理成关…  相似文献   

3.
<正> 题目分解因式:x3+2x2-5x-6. 分析这是一个三次四项式,显然要分组分解,并且要借助于拆项进行,由于拆项的方法不同,因而可得到多种不同的分解方法,这里分类介绍不同的解法中的一部分,以作抛砖引玉. 一、拆二次项解1 原式=(x3+x2)+(x2-5x-6)  相似文献   

4.
因式分解的拆添项技巧一般较难掌握。对于一个多项式f(x),当已知它有一零点a,即有f(x)=0时,依据因式定理,f(x)便有一个一次因式(x-a),这时对f(x)因式分解之拆添项便有章可循:可按系数比1:-a进行拆、添,下面举几例以示其法。 例1 分解因式:x~3+x~2-x-10. 析解 因为整系数多项式f(x)的最高项系数为1时,a是其常数项-10的约数,有±1,±2、±5,  相似文献   

5.
学习因式分解时,常遇到如下这类习题. 分解因式:(1)x5 x 1;(2)x8 x7 1. 这类多项式的特点是:笫1项的幂除以3后余2,第2项的幂除以3后余1,第3项是1.它们可以用形式x3m 2 x3n 1 1来表示. 通常可以用先拆项再分组的方法解决这类问题:  相似文献   

6.
在因式分解时,有时可用拆补项为分组分解创造条件。但拆补项的方法很多,对一个具体题目。究竟如何分法,却一时不易看出,而对于用1或-1代式中未知数时,其值为零的多项式,可以找出一个如何拆补项的规律。  相似文献   

7.
因式分解的方法较多,同学们除了牢固掌握课本上介绍的提公因式法,运用公式法,分组分解法和十字相乘法四种基本方法外,还可以学习如下几种变换技巧.一、拆项变换例1分解因式:3x3+7x2-4.分析:先将7x2拆成两个同类项3x2和4x2,然后再用分组分解法分解.解:原式=(3x3+3x2)+(4x2-4)=3x2(x+1)+4(x2-1)=3x2(x+1)+4(x+1)(x-1)=(x+1)(3x2+4x-4)=(x+1)(x+2)(3x-2)二、添项变换例2分解因式:x4+y4+(x+y)4.分析:此式是关于x、y的对称式,故可通过添项把原式化为仅含x+y和xy的式子.解:原式=x4+2x2y2+y4-2x2y2+(x+y)4=(x2+y2)2-2x2y2+(x+y)4=[(x+y)2-2xy]2-2x2…  相似文献   

8.
在解(证明)不等式问题时,最常用的解题技巧是调整系数、拆项、补项.但在调整系数、拆项、补项时,既要考虑不等式的结构,又要符合相关要求,这就需要在应用待定系数法时兼顾几方面的要求,下面举例说明.例1已知函数y=mx2 x42 31x n的最大值为7,最小值为-1,求此函数的表达式.求函数  相似文献   

9.
在解不等式问题时 ,调整系数、拆项、补项是常用技巧 .但调整系数、拆项、补项时 ,既要考虑不等式的结构 ,又要符合相关要求 ,难以直接确定 .此时若用待定系数法 ,就可兼顾几方面要求 ,只需求出待定系数就行了 .例 1 已知 :1≤ 3x+2 y≤ 3,2≤ x+3y≤5 ,求 5 x+8y的取值范围 .分析 用 3x+2 y及 x+3y将 5 x+8y表示出来是解题的关键 .设 5 x+8y=m(3x+2 y) +n(x+3y) =(3m+n) x+(2 m+3n) y(m,n为待定系数 ) .由 3m+n=5 ,2 m+3n=8,解得 m=1,n=2 .解  5 x+8y=(3x+2 y) +2 (x+3y) ,∵ 2≤x+3y≤ 5 ,∴ 4≤ 2 (x+3y)≤ 10 .又 1≤ 3x+2 y≤ 3,∴ …  相似文献   

10.
一、基础思维探究题型一:多项式的因式分解例1(2005年盐城市)下列因式分解中,结果正确的是()A.x2-4=(x 2)(x-2)B.1-(x-2)2=(x 1)(x 3)C.2m2n-8n3=2n(m2-4n2)D.x2-x 14=x2(1-1x 41x2)分析与解:A项正确运用平方差公式分解;B项将x-2看成一个整体用平方差公式分解为(x-1)(3-x);C项分解不彻底,m2-4n2还能继续分解;D项分解结果不是几个整式积的形式,所以选择A.【关键点拨】①透彻理解因式分解.②因式分解要分解到不能再分解为止.题型二:因式分解在生产中的实际应用例2在半径为R的圆形钢板上,冲去4个半径为r的小圆,如图所示,利用因式分解计算,…  相似文献   

11.
一、拆项变换例 1 分解因式 :x3- 9x 8。解 :原式 =( x3- 1) ( - 9x 9) =( x- 1) ( x2 x 1) - 9( x- 1) =( x- 1) ( x2 x- 8)。注 :本题是通过将 8拆成 - 1和 9后 ,再用分组分解法分解 ;也可将 - 9x拆成 - x和 - 8x,或将x3拆成 9x3和 - 8x3分解。二、添项变换例 2 分解因式 :x4 y4 ( x y) 4。解 :原式 =x4 2 x2 y2 y4 -2 x2 y2 ( x y) 4=( x2 y2 ) 2 -2 x2 y2 ( x y) 4=〔( x y) 2 -2 xy〕2 - 2 x2 y2 ( x y) 4=2〔( x y) 4- 2 xy( x y) 2 x2 y2 〕=2〔( x y) 2 - xy〕2 =2 ( x2 xy y2 ) 2 。注 :本题是关于 x、y的对称式 ,…  相似文献   

12.
拆项是数学学习中重要的一种解题方法 ,它指的是将代数式中的某项有意识地变形成两项或多项的和。灵活地应用这种方法 ,可很好地利用有关的公式、定理和已知条件 ,从而使解题简便易行。一、用于有理数计算例 1.计算 9999× 9999+19999。解 :原式 =(9999× 9999+9999) +10 0 0 0=9999× (9999+1) +10 0 0 0=10 0 0 0× (9999+1)=10 0 0 0 0 0 0 0。二、用于分解因式例 2 .分解因式 x3 +2 x2 - 5 x- 6。解 :原式 =(x3 +2 x2 +x) - (6 x+6 )=x(x+1) 2 - 6 (x+1)=(x+1) (x- 2 ) (x+3)。例 3.分解因式 x4 +x2 +2 ax+1- a2 。解 :原式 =(x4 +2 x2 …  相似文献   

13.
在解某些含括号的高次方程时 ,有的同学常常见到括号就去掉 ,总习惯于将方程中的多项式按降幂排好后再设法求解 .岂不知 ,这样的“习惯”处理有时易造成简题繁解 .例 解方程 :(x2 -x -3 ) 2 -(x2 -x -3 ) =x +3 .解法 1:由原方程得(x4+x2 +9-2x3 -6x2 +6x) -(x2 -x -3 )=x +3 .去括号 ,整理得x4-2x3 -6x2 +6x +9=0 .拆项为x4-2x3 -3x2 -3x2 +6x +9=0 .则 (x2 -2x -3 ) (x2 -3 ) =0 .解得x1 =-1,x2 =3 ,x3 =3 ,x4=-3 .小结 :解法 1及其结果无疑都是正确的 ,但其求解过程较繁琐 ,尤其是其求解过程中的“拆项”有一定的难度 ,一些同学往往不能…  相似文献   

14.
因式分解的方法很多 ,灵活性大 ,因此 ,同学们在牢固掌握课本上所介绍的 4种基本方法的基础上 ,还需掌握如下的一些技巧 .1 拆项、添项例 1 分解因式x2 y2 -x2 -y2 -4xy +1.分析 :本题难于直接应用 4种基本方法进行分解 .然而 ,经观察不难发现 ,只要将 -4xy拆成 ( -2xy -2xy) ,分组后 ,便可利用公式法分解 .解 :原式 =(x2 y2 -2xy +1) -(x2 +y2 +2xy)=(xy -1) 2 -(x +y) 2=(xy +x +y -1) (xy -x -y -1) .例 2 分解因式x4+4 .分析 :只须添上 4x2 和 -4x2 ,即可利用公式 .解 :x4+4 =x4+4x2 +4 -4x2=(x2 +2 ) 2 -( 2x) 2=(x2 +2x +2 ) (x2 -…  相似文献   

15.
因式分解和整式乘法是互逆的恒等变形。除课本上介绍的四种基本方法外,现再介绍三种特殊方法和一些特殊的技巧。 (一)添项或折项法:有些多项式的分解不能直接分组,通常采用添项(添缺项〕或拆项再分组的方法。例1分解因式;(1)x~3 5x~2 3x-9; (2)x~3 3x~2 5x 3; (3) x~4 4。解:(1)原式=(x~3-x~2) (6x~2 3x-9)(拆项) =x~2(x-1) (x-1)(6x 9) =(x-1)(x 3)~2; (2) 原式=(x~3 x~2) (2x~2 5x 3) (拆项)  相似文献   

16.
一、2 - 2分组 :即四项式里两个两个分成一组 ,且能提取公因式或能运用平方差公式 ,或能用立方和 (差 )公式 ,最后又能提取因式。例 1.分解因式 2 x3 + x2 - 6 x- 3。分析 :这是四项式 ,一、二项系数比为 2∶ 1,三、四项系数比也为 2∶ 1,因此可以一、二为一组 ,三、四为一组进行 2 - 2分组。解 :2 x3 + x2 - 6 x- 3=(2 x3 + x2 ) + (- 6 x- 3)=x2 (2 x+ 1) - 3(2 x+ 1)=(2 x+ 1) (x2 - 3)。因为一、三项系数比为 1∶ (- 3) ,二、四项的系数比也为 1∶ (- 3) ,所以还可以一、三项为一组 ,二、四项为一组进行 2 - 2分组。例 2 .分解因式 x2 -…  相似文献   

17.
因式分解的方法较多,本文通过一题多解介绍拆(添)项法如下,供初二同学学习时参考.题目分解因式:x3-9x+8.(1993年华罗庚数学学校初一训练题)分析本题是关于x的三次三项式,可考虑拆常数项、一次项和三次项,也可考虑添二次项进行分解.解一(拆常数项)∵8=9-1,∴原式=x3-1-9x+9=(x3-1)-(9x-9)=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解二(拆一次项)解三(拆三次项)解四(添二次项和拆一次项)解五(添二次项和拆常数项)原式=x3-x2+x2-9x+9-1用拆(添)项法分解因式@于志洪$江苏泰州橡…  相似文献   

18.
数学思想是数学解题的灵魂.在因式分解过程中蕴含着许多数学思想,如果能灵活地运用这些数学思想,往往能更好地解决因式分解问题.一、整体思想用整体思想分解因式,就是将要分解的多项式中的某些项看成一个整体而加以分解.例1把多项式(x2-1)2+6(1-x2)+9分解因式.分析:把(x2-1)看成一个整体,利用完全平方公式进行分解,最后再利用平方差公式分解.解:(x2-1)2+6(1-x2)+9=(x2-1)2-6(x2-1)+9=[(x2-1)-3]2=(x2-4)2=(x+2)2(x-2)2.例2把多项式(a+b)2-4(a+b-1)分解因式.分析:此多项式既无公因式可提,又无公式可套用,似乎无从入手.若视a+b为一个整体,局部…  相似文献   

19.
以上两法用的都是拆项分解法。解法一,是把9x~2拆成3x~2 6x~2,26x拆成18x 8x,拆项后每个括号里两项的系数比均为1:3;解法二,是把9x~2拆成2x~2 7x~2,26x拆成14x 12x,拆项后每个括号里两项的系数比均为1:2。这样拆项后才有公因式可提,否则拆项将无意义。  相似文献   

20.
因式分解的方法多种多样,现将其中最常用的九种变换方法例析如下.一、符号变换法例1把x2(x-4) 5x(4-x) 6(x-4)分解因式.分析:将5x(4-x)变形为-5x(x-4),即可提公因式(x-4)进行分解.解:原式=x2(x-4)-5x(x-4) 6(x-4)=(x-4)(x2-5x 6)=(x-4)(x-3)(x-2).二、指数变换法例2把xn 1 2xn xn-1分解因式.分析:以x的最低次幂xn-1为标准,将xn 1变形为xn-1·x2,xn变形为xn-1·x,即可提公因式xn-1进行分解.解:原式=xn-1·x2 2xn-1·x xn-1=xn-1(x2 2x 1)=xn-1(x 1)2.三、组合变换法例3把x2-6x-4y2 12y分解因式.分析:将题中各因式分组整理,第一项和第三项分为…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号