首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
中点弦问题是解析几何中的重点、热点问题.解圆锥曲线的中点弦问题,很多学生习惯于用所谓“点差法”:首先设出弦的两端点坐标,然后代人圆锥曲线方程相减,得到弦中点的坐标与所在直线的斜率的关系,从而求出直线方程.但是,有时候符合条件的直线是不存在的,这时使用“点差法”便会走入“误区”.下面问题中便有学生经常掉入“陷阱”.题目:已知双曲线 x~2-y~2/2-1,问是否存在直线 l,使 M(1,1)为直线 l 被双曲线所截弦 AB 的中点.若存在,求出直线 l 的方程;若不存在请说明理由.错误解法1:(点差法)设直线与双曲线两交点 A、B 的坐标分别为(x_1,y_1),(x_2,y_2),M 点的坐标为(x_M,y_M).由题设可知直  相似文献   

2.
直线和圆锥曲线的位置关系,是解析几何中最主要的题型,这类问题涉及到圆锥曲线的性质和直线的基本知识以及线段的中点、弦长等.解决的方法往往采用数形结合思想、“设而不求”的方法和韦达定理.其中椭圆、双曲线、抛物线的中点弦存在性问题是相当常见的.由于椭圆和抛物线的弦的中点必在曲线的内部,因此相对较简单,而双曲线的弦的中点可以在曲线的内部和外部,所以双曲线的中点弦存在性问题就值得我们去探索.例已知双曲线方程为2x~2-y~2=2.(1)求以 P(2,1)为中点的双曲线弦所在的直线方程;(2)过点 Q(1,1)能否作直线 l,使 l 与所给的双曲线交于 A,B 两点,且点 Q 是弦 AB  相似文献   

3.
直线和圆锥曲线的位置关系中,涉及弦的问题特别多,其中以弦的中点问题最为丰富多彩.中点弦问题是中学数学的一类重要问题,解决圆锥曲线的中点弦问题,有以下几种策略.1“设而不求”的策略例1已知P(1,1)为椭圆22194x+y=内一定点,过点P的弦AB被点P平分,求弦AB所在直线的方程.分析常规思路设直线AB的斜率为k由方程组求A、B的坐标,由AB的中点坐标建立k的方程求k,但注意到弦的中点坐标公式x=12(x1+x2),y=12(y1+y2),故可用韦达定理,绕过求交点的步骤.设所求直线的方程y=k(x?1)+1,并过A(x1,y1),B(x2,y2)两点,由方程组:22(1)1,1,94y k xx y????…  相似文献   

4.
若点P(x_0,y_0)为定点,则圆锥曲线的过P点且被P点平分的弦简称以定点P为中点的弦.本文给出几种圆锥曲线的以定点为中点的弦所在的直线方程,并说明方程的具体应用. 定理1 若点P(x_0,y_0)在圆C:x~2+y~2=r~2(r>0)内,且P异于圆的圆心,则圆C的以P为中点  相似文献   

5.
有关圆锥曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的弦的中点问题,大体可分为两类:一是已知斜率为k的一组平行弦中点的轨迹(也就是直径)的方程;一是以定点(x_0,y_0)为中点的弦所在直线的方程(中点弦的方程)。下面分别作论述。一、斜率为k的一组平行弦中点的轨迹(直径)方程定理1.二次曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的斜率为k的一组平行弦中点的轨迹(即直径)方程是(2A+Bk)x+(B+2Ck)y+(D+Ek)=0①推论二次曲线的直径是一条过斜率为  相似文献   

6.
解析几何是高中数学中较难学习的一部分内容,尤其是其中的题目让我们感到困难,分析其主要原因是:解析几何中有很多解题思路鲜为人用,而恰恰是这些解题思路左右着我们对解析几何问题的解决.当我们能够熟练运用这些解题思路时,我们心中便拥有了一片“阳光部落”.“阳光部落”成员之一:设而不求,整体思想为了减少解析几何题目不必要的中间运算,用“设而不求,整体思想”的方法可以将一些枝节消除掉或者代换掉.例1过点P(2,1)的直线与双曲线x2-y22=1交于A,B两点,若P为AB的中点.(1)求直线AB的方程;(2)若存在Q(1,1),证明不存在以Q为中点的弦.解(…  相似文献   

7.
设Γ为任意一条二次曲线,若Γ的过点 P 的弦 l 被P平分,则称 l 为Γ的以 P 为中点的中点弦,文[1]、[2]等均讨论过中点弦的存在问题,本文则在假定中点弦存在时给出统一的中点弦方程.  相似文献   

8.
圆锥曲线弦的中点   总被引:1,自引:0,他引:1  
解析几何中,涉及圆锥曲线弦的中点问题很多。传统的解答方法是:将弦所在的直线方程,代入圆锥曲线方程,再应用韦达定理。但这样解常常导致冗长的运算,也没有体现弦中点的本质特征。那么,圆锥曲线弦中点究竟有哪些本质含义呢?现试阐述如下。一、弦中点决定所在弦的斜率由于现行教材中,把含交叉项xy的二次曲线:Ax~2+Bxy+Cy~2+Dx+Ey+F=0,作为选学内容,所以本文着重研究B=0的情况。定理一:设P_1P_2为圆锥曲线C_1:Ax~2+Cy~2+Dx+Ey+F=0的弦,M_0(x_0,y_0)为弦P_1P_2中点,k为弦斜率,若k存在,  相似文献   

9.
例题己知直线L与椭圆4x2+9少一36相交于两点A,B,弦月召的中点的坐标是为(1,1),求直线L的方程 分析:这一道典型的中点弦问题,由于弦月召的中点坐标为(1,1),由椭圆的对称性知,直线L的斜率k存在,若设A、B两点的坐标为(x:,y,)和(xZ,yZ),则x,笋x2. [解法I」:设点A、B的坐标为A(xl,yl),B(x2,yZ)因A、B在椭圆4尹+9尹一36上,则有,仁解法Iv习:设直线L的参数方程为:{’一于+‘e,sa气y一1一卜‘s一na(t为参数,a为倾角且 厂_a关只二~) 乙4xzZ+9少12一364x22+9少22=36①一②:4(x;2一x22)+9(少12一少22)一。利用中点坐标和斜率公式有:*一粤·-,·-…  相似文献   

10.
二次曲线上任意两点连线叫做弦,以P(x_0,y_0)为中点的弦称为二次曲线关于P的中点弦.我们知道,若P不为有心二次曲线的中心,则P的中点弦是唯一的. 定理设P(x_0,y_0)为二次曲线Ax~2 Bxy Cy~2 Dx Ey F=0内部一点(异于中心),则P的中点弦所在的直线方程为  相似文献   

11.
在解析几何中,与中点弦有关的问题历来是解几的热点内容之一.若已知弦的中点M的坐标为M(a,b),则可设弦AB的两个端点的坐标分别为A(a s,b t)、B(a-s,b-t),其独特功能是:将弦的两个端点的坐标与中点坐标  相似文献   

12.
<正>直线与圆锥曲线相交所得弦的中点问题是解析几何中的重要内容之一,也是高考的热点问题,这类问题一般有以下几种类型:(1)求中点弦所在的直线方程问题;(2)求弦中点的轨迹方程问题;(3)弦长为定值时,弦的中点坐标问题等.其解法有点差法、待定系数法、参数法以及中心对称变换法等,但最常用的方法为点差法和待定系数法.一、求中点弦所在直线方程问题【例1】已知一直线与椭圆x24+y22=1交于A、B  相似文献   

13.
“圆锥曲线”是平面解析几何中的重点内容之一,而圆锥曲线中的“中点弦”问题又是直线与圆锥曲线关系中的重要内容,本文试图从圆锥曲线的中点弦方程、存在性及其应用展开研讨. 1 圆锥曲线的中点弦概念 定义 设:(,)0Cfxy=为二次曲线,0(,Px 0)y为平面上的点,若直线l与c交于AB,而A  相似文献   

14.
错在哪里     
题 已知双曲线方程为x~(2)—y~(2)/2=1.试问:是否的存在被B(1,1)平分的弦?如果存在,求出弦所在的直线方程;如果不存在,说明理由.解 假设这样的弦存在,其两用点为P(x_(1),y_(1))、Q(x_(2),y_(2)),则有  相似文献   

15.
与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题.解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解.若设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1)、B(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为"点差法".一、以定点为中点的弦所在直线的方程例1过椭圆x2/16+y2/4=1内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方程.  相似文献   

16.
1命题命题1若A B是椭圆22C1:ax2+by2=1的一条弦,且弦AB的中点为M(xM,y M),则椭圆22222C:(2x M x)(2y My)a b?+?=1经过A、B两点.证明设点A(x A,y A)、B(x B,y B),则由M是弦AB的中点,可知,x B=2x M?xA,y B=2y M?yA,由点B在椭圆C1上,知(2x M?x A)2/a2+(2y M?y A)2/b2=1,所以点A在椭圆C2上.同理可知点B也在椭圆C2上,故椭圆C2经过A,B两点.类似地有:命题2若AB是双曲线22C1:ax2?by2=1的一条弦,且弦AB的中点为M(xM,y M),则双曲线22222C:(2x M x)(2y My)1a b???=经过A,B两点.命题3若AB是抛物线y2=2px的一条弦,且弦AB的中点为…  相似文献   

17.
1问题的提出题目经过点P(1,1)的直线l和双曲线x2-y2/2=1交于A,B两点,并且P是弦AB的中点,问直线l是否存在,如果存在,求出直线l的方程;如果不存在,说明理由.对于这道题,我们都非常熟悉,可以用点差法来处理,解题过程如下:解当直线l的斜率不存在时,显然不满足要求;  相似文献   

18.
中点问题是解析几何中的重点、热点问题 .本文给出它的一种处理方法 :若M是线段AB的中点 ,且M点的坐标为 (x0 ,y0 ) ,则可设A(x0 +m ,y0 +n) ,B(x0 -m ,y0 -n)  (m ,n∈R) ,再结合题目中的其它条件进行解题 ,是一种行之有效的方法 ,以下分别举例加以说明 .1 判断直线 (或曲线 )的存在性例 1 已知双曲线 x24 - y22 =1,问是否存在直线l,使N(1,12 )为直线l被双曲线所截弦AB的中点 .若存在 ,求出直径l的方程 ;若不存在请说明理由 .解 由题意得N(1,12 )为弦AB的中点 ,可设A(1+m ,12 +n) ,B(1-m ,12 -n) …  相似文献   

19.
1课堂遗留在一次点差法的教学中,笔者评讲了一道经典题:已知椭圆方程为x~2/4+y~2/3=1,求以点P(1,1)为中点的椭圆的弦所在的直线方程.讲解时,笔者有指向性的选取了一位学  相似文献   

20.
有关弦中点问题的一般解法采用方程的思想来解决。若充分利用弦中点确定弦的斜率来解决此类问题,将起到化繁为简,化难为易的作用。引理1 设A(x_1,y_1),B(x_2,y_2)两点是曲  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号