首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Fifteen highly skilled sprinters were filmed while running at maximum velocity. The results were digitized and computer processed with interest focused on the muscle moments generated about the hip, knee, and ankle of the ground leg. Muscle activity about the hip consisted of extensor (concentric) dominance from foot descent, through foot strike, and into mid-support. Muscle dominance shifted to the hip flexors (eccentric) during mid-support and continued through takeoff. Muscle dominance at the knee demonstrated a pattern of flexor (eccentric, then concentric) dominance from foot descent through foot strike and into mid-support. Knee extensors (eccentric, then concentric) then achieved dominance through takeoff. During the later stages of takeoff, the dominance decreased or reversed briefly to flexor (eccentric) activity prior to a period of minimal activity following the toe-off position. From a period of minimal activity prior and subsequent to ground contact, the plantar flexors (eccentric, then concentric) of the foot were dominant throughout the ground phase. Qualitatively, the unexpected knee flexor dominance during foot strike was generated to limit the braking action created during this portion of ground contact. The unanticipated hip flexor dominance during takeoff served to rotate the upper body forward and into the approaching air phase. In addition, both of these actions allowed efficient use of the two-joint muscles of the leg during the critical phases of ground contact. Finally, the minimizing or reversing of the knee extensor dominance during the later stages of takeoff served to protect the joint from injury. Quantitatively, the magnitude of hip extensor/knee flexor activity during foot strike was significantly related (r = .70, p = .01) to the prior occurrences of related leg injury in the subjects.  相似文献   

2.
Physical activities such as stair walking and jumping result in increased dynamic loading on the human musculoskeletal system. Use of light weight, externally attached accelerometers allows for in-vivo monitoring of the shock waves invading the human musculoskeletal system during those activities. Shock waves were measured in four subjects performing stair walking up and down, jumping in place and jumping off a fixed elevation. The results obtained show that walking down a staircase induced shock waves with amplitude of 130% of that observed in walking up stairs and 250% of the shock waves experienced in level gait. The jumping test revealed levels of the shock waves nearly eight times higher than that in level walking. It was also shown that the shock waves invading the human musculoskeletal system may be generated not only by the heel strike, but also by the metatarsal strike. To moderate the risk of degenerative joint disorders four types of viscoelastic insoles were utilized to reduce the impact generated shock waves. The insoles investigated were able to reduce the amplitude of the shock wave by between 9% and 41% depending on the insole type and particular physical activity. The insoles were more effective in the reduction of the heel strike impacts than in the reduction of the metatarsal strike impacts. In all instances, the shock attenuation capacities of the insoles tested were greater in the jumping trials than in the stair walking studies. The insoles were ranked in three groups on the basis of their shock absorbing capacity.  相似文献   

3.
Snowshoeing is a popular form of winter recreation due to the development of lightweight snowshoes that provide flotation, traction, and stability. The purpose of this study was to determine the effects of snowshoes on lower extremity kinematics during level walking. Twelve adults (6 males, 6 females, body mass = 67.5 +/- 10.7kg) completed six 3-minute level walking trials. Subjects walked overground without snowshoes and on packed snow using conventional and flexible tail snowshoes. We placed lightweight inertial/gyroscopic sensors on the sacrum, thigh, shank, and foot. We recorded sensor orientation and calculated hip, knee, and ankle joint angles and angular velocities. Compared to level overground walking, subjects had greater hip and knee flexion during stance and greater hip flexion during swing while snowshoeing. Ankle plantarflexion began during late swing when snowshoeing vs. heel strike during overground walking. Lower extremity kinematics were similar across snowshoe frame designs during level walking. Our results show that snowshoeing on packed snow results in a more flexed leg compared to overground walking and may reflect a strategy to limit the effects of walking with an extended heel.  相似文献   

4.
ABSTRACT

Previous research suggests that landing mechanics may be affected by the mechanics of the preceding jump take-off. The purpose of the present study was to investigate whether jump take-off mechanics influence the subsequent landing mechanics. Female volleyball (n = 17) and ice hockey (n = 19) players performed maximal vertical jumps with forefoot and heel take-off strategies. During forefoot and heel jumps, participants were instructed to shift their weight to their forefoot or heel, respectively, and push through this portion of the foot throughout the jump. Jump mechanics were examined using 3D motion analysis, where lower extremity net joint moment (NJM) work, NJM, and segment angles were compared between forefoot and heel jumps using multivariate ANOVA. During jump take-off, participants performed more positive ankle plantar flexor and knee extensor NJM work in forefoot compared to heel jumps (P < 0.05). From initial foot contact to foot flat, participants performed more negative ankle plantar flexor and hip extensor NJM work during heel compared to forefoot jumps (P < 0.05). The present results demonstrate that using a heel take-off strategy results in a different distribution of lower extremity NJM work and NJM during landing compared to landings following forefoot jumps.  相似文献   

5.
ABSTRACT

This study aimed to investigate the influence of foot strike patterns on the behaviour of the triceps surae muscle-tendon unit, including the Achilles tendon whose length nearly corresponds to force of the triceps surae, and the medial gastrocnemius muscle (MG) during running. Seven male volunteers ran with forefoot and rearfoot strikes at 10, 14 and 18 km h?1 on a treadmill. The MG fascicle length was measured using ultrasonography. The in vivo length of the curved Achilles tendon was quantified by combining ultrasonography with optical motion capture of reflective markers on the right lower limb and an ultrasound probe. The forefoot strike resulted in a significantly shorter MG fascicle length at the initial contact, at Achilles tendon peak elongation, and at toe-off, than the rearfoot strike. The Achilles tendon length at initial contact was greater during the forefoot strike than during the rearfoot strike at 18 km h?1, while its peak elongation was not significantly different during forefoot and rearfoot running. These results indicate that the MG, with a shorter length during forefoot running, manages to address demands for a similar peak force of the triceps surae than during rearfoot running.  相似文献   

6.
Despite the growing interest in minimalist shoes, no studies have compared the efficacy of different types of minimalist shoe models in reproducing barefoot running patterns and in eliciting biomechanical changes that make them differ from standard cushioned running shoes. The aim of this study was to investigate the acute effects of different footwear models, marketed as “minimalist” by their manufacturer, on running biomechanics. Six running shoes marketed as barefoot/minimalist models, a standard cushioned shoe and the barefoot condition were tested. Foot–/shoe–ground pressure and three-dimensional lower limb kinematics were measured in experienced rearfoot strike runners while they were running at 3.33 m · s?1 on an instrumented treadmill. Physical and mechanical characteristics of shoes (mass, heel and forefoot sole thickness, shock absorption and flexibility) were measured with laboratory tests. There were significant changes in foot strike pattern (described by the strike index and foot contact angle) and spatio-temporal stride characteristics, whereas only some among the other selected kinematic parameters (i.e. knee angles and hip vertical displacement) changed accordingly. Different types of minimalist footwear models induced different changes. It appears that minimalist footwear with lower heel heights and minimal shock absorption is more effective in replicating barefoot running.  相似文献   

7.
Abstract

Inertial sensors may provide the opportunity for broader and more cost effective gait analysis; however some questions remain over their potential use in this capacity. The aim of the study was to determine whether an inertial sensor could discriminate between normal walking, fast walking, and running. A single group crossover design was used to compare acceleration profiles between three gait conditions: normal walking, fast walking, and running. An inertial sensor was placed on the sacrum of 12 participants (6 male, 6 female) who performed 3 trials of each gait condition on both overground and treadmill settings. A significant difference (P < 0.001) in the occurrence of heel strike in the gait cycle was found between running and both walking conditions. No differences were seen between overground and treadmill in any condition or variable. The results indicate that a single sacral mounted inertial sensor can differentiate running from normal walking and fast walking using temporal gait event measures. This study indicates that inertial sensors can differentiate walking from running gait in healthy individuals which may have potential for application in the quantification of physical activity in the health and exercise industry.  相似文献   

8.
With this research, we sought to establish the accuracy of stride velocity data collected by the s3 Stride Sensor Participants walked along a GAITRite mat at self-selected slow, preferred, and fast velocities, with two s3 Stride Sensors attached to their right foot. The start position was systematically varied such that the GAITRite system would record the second through sixth strides at each walking velocity. Both slow and preferred walking velocities were underestimated by 14% relative to the GAITRite (p < .05), while independent of walking velocity, Strides 2 and 3 were underestimated by 26% and 9% (p < .05), respectively. Researchers should use caution when interpreting data collected at slow and preferred walking velocities and during the first three strides.  相似文献   

9.
为探索生长发育突增期青少年自然行走时左右足底各区域压力分布特征,采用比利时Footscan平板式足底压力分布测试系统对20名青少年(13-14岁)正常行走时左右足底压力的测试。研究显示,13-14岁青少年自然行走过程中左右双足各区域的压力分布存在一定的差异性意义,但左右双足的足底压力分布规律基本一致。  相似文献   

10.
Abstract The aims of this study were to examine ground contact characteristics, their relationship with race performance, and the time course of any changes in ground contact time during competitive 800?m and 1500?m races. Twenty-two seeded, single-sex middle-distance races totalling 181 runners were filmed at a competitive athletics meeting. Races were filmed at 100?Hz. Ground contact time was recorded one step for each athlete, on each lap of their race. Forefoot and midfoot strikers had significantly shorter ground contact times than heel strikers. Forefoot and midfoot strikers had significantly faster average race speed than heel strikers. There were strong large correlations between ground contact time and average race speed for the women's events and men's 1500?m (r?=?-0.521 to -0.623; P?相似文献   

11.
In-shoe plantar pressure systems are commonly used in clinical and research settings to assess foot function during functional tasks. Recently, Tekscan® has updated their F-Scan® in-shoe plantar pressure system; however, this system’s test–retest reliability has not been established. Therefore, the purpose of this study was to determine the test–retest reliability of the F-Scan® 7 system in recreationally active individuals during treadmill walking. Seventeen healthy adults completed 2 sessions of treadmill walking. For each session, participants were fitted for shoes and pressure insoles and walked on a treadmill at a self-selected pace for 30 s. Following the sessions, the test–retest reliability peak pressure, pressure time integral, average pressure and pressure contact area over 4 regions of the foot (heel, mid-foot, forefoot and toes) was assessed by calculating intraclass coefficients (ICC 2,k) and coefficient of variation percentage (CoV%). Pressure contact area consistently had the highest ICCs and lowest CoV% (ICCs: 0.91–0.98; CoV%: 2.7–7.8%). Whereas, the forefoot and toe regions had the highest ICCs for all 4 measures (ICCs: 0.83–0.98; CoV%: 3.1–13.4%). During treadmill walking in healthy recreationally active individuals, the reliability of the new Tekscan F-Scan® ranged from poor to high and was dependent on the measure and region of the foot.  相似文献   

12.
This study investigated the immediate effects of reducing the shoe drop (i.e. the difference between the heel and the forefoot height) on the kinematics and kinetics of the lower extremities of children tennis players performing a tennis-specific movement. Thirteen children tennis players performed a series of simulated open stance forehands wearing 3 pairs of shoes differing only in the drop: 0 (D0), 6 (D6) and the control condition of 12?mm (D12). Two embedded forceplates and a motion capture system were used to analyse the ground reaction forces and ankle and knee joint angles and moments of the leading lower limb. In D6 compared with D12, the peak impact force was reduced by 24% (p?=?.004) and the ankle was less dorsiflexed at foot strike (p?=?.037). In D0 compared with D12, the peak impact force was reduced by 17% (p?=?.049), the ankle was less dorsiflexed at foot strike (p?=?.045) and the knee was more flexed at foot strike (p?=?.007). In addition, 4 out of 13 participants (31%) presented a forefoot strike pattern for some of the trials in D0. No difference was observed across shoe conditions for the peak knee extensor moment (p?=?.658) or the peak ankle plantarflexor moment (p?=?.071). The results provide preliminary data supporting the hypothesis that for children tennis players, using a 6-mm lower shoe drop might reduce heel impact forces and thus limit potentially impact-related injuries.  相似文献   

13.
Although the biomechanical properties of the various types of running foot strike (rearfoot, midfoot, and forefoot) have been studied extensively in the laboratory, only a few studies have attempted to quantify the frequency of running foot strike variants among runners in competitive road races. We classified the left and right foot strike patterns of 936 distance runners, most of whom would be considered of recreational or sub-elite ability, at the 10 km point of a half-marathon/marathon road race. We classified 88.9% of runners at the 10 km point as rearfoot strikers, 3.4% as midfoot strikers, 1.8% as forefoot strikers, and 5.9% of runners exhibited discrete foot strike asymmetry. Rearfoot striking was more common among our sample of mostly recreational distance runners than has been previously reported for samples of faster runners. We also compared foot strike patterns of 286 individual marathon runners between the 10 km and 32 km race locations and observed increased frequency of rearfoot striking at 32 km. A large percentage of runners switched from midfoot and forefoot foot strikes at 10 km to rearfoot strikes at 32 km. The frequency of discrete foot strike asymmetry declined from the 10 km to the 32 km location. Among marathon runners, we found no significant relationship between foot strike patterns and race times.  相似文献   

14.
Abstract

Although the biomechanical properties of the various types of running foot strike (rearfoot, midfoot, and forefoot) have been studied extensively in the laboratory, only a few studies have attempted to quantify the frequency of running foot strike variants among runners in competitive road races. We classified the left and right foot strike patterns of 936 distance runners, most of whom would be considered of recreational or sub-elite ability, at the 10 km point of a half-marathon/marathon road race. We classified 88.9% of runners at the 10 km point as rearfoot strikers, 3.4% as midfoot strikers, 1.8% as forefoot strikers, and 5.9% of runners exhibited discrete foot strike asymmetry. Rearfoot striking was more common among our sample of mostly recreational distance runners than has been previously reported for samples of faster runners. We also compared foot strike patterns of 286 individual marathon runners between the 10 km and 32 km race locations and observed increased frequency of rearfoot striking at 32 km. A large percentage of runners switched from midfoot and forefoot foot strikes at 10 km to rearfoot strikes at 32 km. The frequency of discrete foot strike asymmetry declined from the 10 km to the 32 km location. Among marathon runners, we found no significant relationship between foot strike patterns and race times.  相似文献   

15.
In this study, we investigated the effects of inclined and raised flat boards on the take-off motion of the long jump to determine the effectiveness of these boards as training tools. Eight male long jumpers were videotaped with two high-speed video cameras (250 Hz) set perpendicular to the runway. Four different jumps were performed with in four conditions, all with their medium length run-up: a long jump with their normal technique, long jumps on upward inclined boards of two different inclinations (2.5 and 5.0 degrees), and a long jump on a raised flat board (0 degrees, 50 mm). The raised flat board enhanced the pivot of the body over the take-off foot, and reduced flexion of the take-off leg knee. However, the inclined boards did not produce the same effects as the raised flat board. The use of the inclined boards increased the vertical velocity of the centre of mass of the body at toe-off, resulting in increased airborne time. These results suggest that the raised flat board and inclined boards would be effective in improving long jumpers' techniques during the take-off and airborne phases.  相似文献   

16.
The purpose of this study was to determine the installation of the backstroke start device reduces 15-m time. Thirteen college swimmers participated in this study. The aerial start and underwater motions were recorded with two digital video cameras. The center of mass (CM) of the swimmer, angular displacements and velocities of the shoulder, hip and knee joints were calculated. As an indicator of performance, the 5- and 15-m times were measured. The 5- and 15-m times in the backstroke start device condition were significantly shorter than in the non-backstroke start device condition. The vertical velocities of the CM at hand-off and toe-off in the backstroke start device condition were significantly greater than in the non-backstroke start device condition, while there was no significant difference in the CM horizontal velocity at toe-off. As a result, the height of the great trochanter at entry of the fingertips, with the backstroke start device, was 15 cm higher than in the non-backstroke start device condition. In addition, the CM horizontal velocities at 5 m in the backstroke start device condition were significantly greater than those of the non-backstroke start device. Thus, the use of the backstroke start device may reduce the 15-m time by diminution of the entry area.  相似文献   

17.
Abstract

Race walking is an endurance event which also requires great technical ability, particularly with respect to its two distinguishing rules. The 50 km race walk is the longest event in the athletics programme at the Olympic Games. The aims of this observational study were to identify the important kinematic variables in elite men's 50 km race walking, and to measure variation in those variables at different distances. Thirty men were analysed from video data recorded during a World Race Walking Cup competition. Video data were also recorded at four distances during the European Cup Race Walking and 12 men analysed from these data. Two camcorders (50 Hz) recorded at each race for 3D analysis. The results of this study showed that walking speed was associated with both step length (r=0.54,P=0.002) and cadence (r=0.58,P=0.001). While placing the foot further ahead of the body at heel strike was associated with greater step lengths (r=0.45,P=0.013), it was also negatively associated with cadence (r= ?0.62,P<0.001). In the World Cup, knee angles ranged between 175 and 186° at initial contact and between 180 and 195° at midstance. During the European Cup, walking speed decreased significantly (F=9.35,P=0.002), mostly due to a decrease in step length between 38.5 and 48.5 km (t=8.59,P=0.014). From this study, it would appear that the key areas a 50 km race walker must develop and coordinate are step length and cadence, although it is also important to ensure legal walking technique is maintained with the onset of fatigue.  相似文献   

18.
The purpose of this study was to investigate the relationship between Achilles tendon properties and foot strike patterns in long-distance runners. Forty-one highly trained male long-distance runners participated in this study. Elongation of the Achilles tendon and aponeurosis of the medial gastrocnemius muscle were measured using ultrasonography, while the participants performed ramp isometric plantar flexion up to the voluntary maximum. The relationship between the estimated muscle force and tendon elongation during the ascending phase was fit to a linear regression, the slope of which was defined as stiffness. In addition, the cross-sectional area of the Achilles tendon was measured using ultrasonography. Foot strike patterns (forefoot, midfoot and rearfoot) during running were determined at submaximal velocity (18 km · h?1) on a treadmill. The number of each foot strike runner was 12 for the forefoot (29.3%), 12 for the midfoot (29.3%) and 17 for the rearfoot (41.5%). No significant differences were observed in the variables measured for the Achilles tendon among the three groups. These results suggested that the foot strike pattern during running did not affect the morphological or mechanical properties of the Achilles tendon in long-distance runners.  相似文献   

19.
BackgroundPrevious studies of foot strike patterns of distance runners in road races have typically found that the overwhelming majority of shod runners initially contact the ground on the rearfoot. However, none of these studies has attempted to quantify foot strike patterns of barefoot or minimally shod runners. This study classifies foot strike patterns of barefoot and minimally shod runners in a recreational road race.MethodsHigh-speed video footage was obtained of 169 barefoot and 42 minimally shod distance runners at the 2011 New York City Barefoot Run. Foot strike patterns were classified for each runner, and frequencies of forefoot, midfoot, and rearfoot striking were compared between the barefoot and minimally shod groups.ResultsA total of 59.2% of barefoot runners were forefoot strikers, 20.1% were midfoot strikers, and 20.7% were rearfoot strikers. For minimally shod runners, 33.3% were forefoot strikers, 19.1% were midfoot strikers, and 47.6% were rearfoot strikers. Foot strike distributions for barefoot and minimally shod runners were significantly different both from one another and from previously reported foot strike distributions of shod road racers.ConclusionFoot strike patterns differ between barefoot and minimally shod runners, with forefoot striking being more common, and rearfoot striking less common in the barefoot group.  相似文献   

20.
Abstract

The aims of this study were to examine ground contact characteristics, their relationship with race performance, and the time course of any changes in ground contact time during competitive 800 m and 1500 m races. Twenty-two seeded, single-sex middle-distance races totalling 181 runners were filmed at a competitive athletics meeting. Races were filmed at 100 Hz. Ground contact time was recorded one step for each athlete, on each lap of their race. Forefoot and midfoot strikers had significantly shorter ground contact times than heel strikers. Forefoot and midfoot strikers had significantly faster average race speed than heel strikers. There were strong large correlations between ground contact time and average race speed for the women's events and men’s 1500 m (r = ?0.521 to ?0.623; P < 0.05), whereas the men's 800 m displayed only a moderate relationship (r = ?0.361; P = 0.002). For each event, ground contact time for the first lap was significantly shorter than for the last lap, which might reflect runners becoming fatigued.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号