首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于模糊控制的智能循迹小车的设计   总被引:1,自引:0,他引:1  
以"飞思卡尔"杯智能车大赛为研究背景,开发了一种以MC9S12DG128作为控制器的智能循迹小车.该小车采用光电传感器检测路径,获得赛道信息,求出小车与黑线间的偏差,采用模糊控制对小车的速度进行控制,使小车能够自动跟随直道和弯道.实践表明,采用模糊控制的智能小车在路径识别的精准度,稳定性,及速度控制上具有明显优势.  相似文献   

2.
《科技风》2017,(20)
随着社会的发展进步,汽车开始普及,走进千家万户,全民汽车时代即将到来,自动化的智能小车的研究越来越受欢迎,自动循迹避障小车的研制越来越完善,意在能够更加稳定循迹,精准避障。本设计就是根据AT89S51单片机设计,实现其自动循迹避障功能,AT89S51单片机作为一个功耗既低、性能又高的CMOS8位单片机为设计电路的主控制核心,外接稳压电源模块、红外传感器检测模块、电机和驱动模块等部分协同配合,红外传感检测模块控制小车稳定循迹功能,再由两个直流减速电机差动调节,以及调节AT89S51单片机发出的PWM的方波占空比,使小车能够在预设的范围之内达成任何方向黑线以及随意角度转移完成智能小车精确避障功能。  相似文献   

3.
针对智能机器人自主行走的需求,本文提出一种能实现智能循迹避障的机器人小车系统设计。该系统以AT89S52单片机为控制核心。利用反射式红外线光电传感器ST178传感器来识别路径,采用L298N驱动小车直流电机,采用智能循迹算法,最终实现了智能循迹的机器人小车系统。完成在已有路径标识下自主循迹避障行走功能。  相似文献   

4.
基于K60P144单片机最小系统设计了智能循迹小车创新实训系统,包括:智能小车单元、软件设计单元。智能小车由主控模块、电机驱动模块、陀螺仪模块、CCD模块、编码器模块以及供电电路模块组成;软件设计中采用C51程序语言开发控制。该系统可用于自动化专业创新实践训练课程综合设计。  相似文献   

5.
能够根据路况改变和自动实现转弯等功能,这就对智能车的设计提出更高要求。基于此,本文研究了基于线性CCD图像识别智能小车的设计与开发,分别进行了CCD传感器信号采集处理模块设计,电机驱动模块设计,控制算法的编制及执行和调试、舵机控制设计与安装,通过系统硬件平台搭建和软件设计,采用TSL1401线性CCD作为小车的循迹模块来识别白色路面中央的黑色引导线,采集信号并将信号转换为能被单片机识别的数字信号,完成了基本功能和系统调试,测试结果表明系统具有良好的避障成功率和控制精度。  相似文献   

6.
许伦辉  薛强 《科技广场》2012,(7):129-132
本设计是一种基于单片机控制的自动循迹小车系统,研究了小车的功能结构,并对小车系统的软硬件设计进行了探究。寻迹小车采用光电传感器来识别白色路面中央的黑色引导线,选用AT89S52为控制芯片,通过红外发射和接收采集信号,并将该信号转换为被单片机识别的数字信号。另外,通过控制电机的转速及正反转可以实现小车前进、左转、右转等功能。智能小车的研究融入了机器人学、机电一体化技术、通讯与计算机技术、视觉与传感器技术、智能控制与决策等多学科的研究成果,反映出一个国家信息与自动化技术的综合实力。所以本论文对智能小车的研究意义重大。  相似文献   

7.
小车控制系统以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感技术、电子、计算机、机械等多个学科;主要由路径识别、车速控制等功能模块组成。一般而言,小车控制系统要求小车在白色的场地上,通过控制小车的转向角和车速,使小车能自动地沿着一条任意给定的黑色带状引导线行驶。本文论述小车控制系统设计的开发过程,对怎样实现系统的设计过程做了深入探讨。小车控制系统是以单片机AT89C51为控制中心,通过黑标检测装置,检测颜色的变化,得到"0""1"信号,然后输入AT89C51单片机,单片机经过处理将信号送入脉宽调速专用集成电路L298芯片,芯片L298接收到脉冲信号,控制左右两个电机的驱动,从而实现小车对黑标循迹行走、前进、转弯、停止等功能。  相似文献   

8.
中国是农业大国的现状和现代电子科技的进步促使农业自动化的发展。该设计基于单片机为控制核心的智能循迹小车,主要利用红外传感器、黑白传感器对周围信息进行采集更新,C51对信息处理并且通过直流电机、舵机驱动控制完成对草莓定向、定高、定点采摘和智能卸载工作,完成农业自动一体化任务。采摘机器人是农业机器人的一种,在农业方面具有广阔的应用前景。  相似文献   

9.
以STC12C5A60S2单片机为控制核心设计了智能避障小车。智能避障小车利用超声波模块测距实现超声波避障和物体跟随,用两对红外发射接收管实现红外避障和物体跟随,利用红外光电传感觉器实现循迹功能,LED数码管显示距离、温度等信息。设计的智能避障小车稳定可靠,是智能小车设计入门的学习佳品,同时也可为智能机器人设计提供参考。  相似文献   

10.
本设计以STM32单片机最小系统作为主控板,采用模块化设计方案,包含红外循迹传感器模块、超声波测距模块、二维码识别模块、显示模块、颜色识别模块、机械臂模块、电源模块组成。本设计以普通四轮小车为载体。底部循迹传感器用于检测路面铺设的循迹线;超声波模块测量小车距离围墙的距离用于辅助定位;二维码识别模块通过扫描二维码领取搬运任务;显示模块显示任务信息;红外传感器用于检测物料位置;颜色识别模块检测物料颜色;机械臂模块执行抓取或放置动作;电源模块为小车提供动力源;主控板根据各模块的反馈信息控制小车自主搬运物料。  相似文献   

11.
本系统以飞思卡尔公司MC9S12XS128MAA微处理器,作为主控芯片。采用组委会提供的C、B车模作为竞赛模型。以Code Warrior5.1嵌入式开发软件作为此次的软件开发平台。采用的是6个电磁传感器来检测赛道磁场的循迹方案,配合转向伺服机、光电编码器、R260DC电机、超声波通讯模块、电池等组成小车的硬件结构。对小车采集回来的电磁信号分析处理,从而达到控制识别路径。  相似文献   

12.
运水机器人   总被引:1,自引:0,他引:1  
本系统以ATMEL公司的AT89S51单片机为核心,采用机械和数字电路相结合的方式实现自动装水、循迹、自动卸水,并能显示运行时间和运水量。系统在机械方面利用两个电机控制小车的运动,红外发光对管实现寻迹,并通过产生相应的控制信号来于单片机进行通信,从而实现了实时且精确的控制。通过实际的测试,此运水机器人可以实现以上全部功能,而且单位时间的运水量可达到一定量。  相似文献   

13.
为了普及新一代信息技术,培养具备新一代信息技术素养人才,本文设计了一种智能交通教育沙盘系统,系统包括无人驾驶智能小车、路灯控制、ETC控制、无线充电桩、智能公交站和智慧停车场等模组。无人驾驶智能小车作为沙盘系统的重要组成部分,由超声波传感器、电池、显示屏、天线等组成,可实现自动循迹、自动避障、车联网、语言播报、交通灯识别等功能。经对比设计研究,超声波传感器感应车辆四周障碍物,距离5~12cm可调,5G模块实现车与车之间的通信,时延≤500ms。满足了中小学信息技术,中、高职相关专业入门教育教学,同时该系统具有实际场景应用价值。  相似文献   

14.
伴随着电动轮汽车行业的发展和进步,为了有效提升其可控优势,就要借助车辆转向动力学和驱动力矩分配等方式有效对电子差速进行控制。文章中简要分析了电子差速转向原理,并系统化讨论了融合辅助转向功能的电动轮汽车电子差速控制策略,仅供参考。  相似文献   

15.
全国大学生工程训练综合能力竞赛要求设计并制造一种以重力势能为动力源、电控自动避障功能的小车。针对这种命题,本文提出一种具有创新性、结构稳定性的设计方案。该方案利用舵机实现转向,齿轮组和变速机构共同完成自行行走的势能小车。本文从能量转换、传动与控制等方面介绍了重力势能小车的设计思路并给出了势能小车的尺寸、传动比等各参数,势能小车即可用于竞赛小车,也可以作为教学载体适用于教学。  相似文献   

16.
<正>该无线充电智能循迹小车作为一款基于AT89C52单片机的自主行驶小车,具备极高的灵活性和可拓展性,维护和升级简便快捷。随着科技的不断进步和应用场景的不断拓展,智能小车还可以通过与其他技术的结合,实现更多的智能化功能和创新应用,为社会的生产生活带来更大的变革和进步。随着智能化社会的发展,传感器和自动控制技术也随之迅猛发展,这些技术现已广泛应用于机械制造、电气自动化和电子信息等领域。尤其是在制造业领域中,智造变得越来越重要。为满足汽车智能化发展对电子信息技术的需求,以单片机为核心处理器,设计并制作了一个无线充电智能循迹小车,该小车可以通过按键选择单片机内的相应控制程序,实现循迹、避障和红外遥控等功能。整个硬件系统包括小车主控板、驱动板、电池组、电机和传感器等。  相似文献   

17.
《科技风》2017,(17)
无人驾驶电动车在转向过程中,转向电机提供驱动力驱动车轮转向,取消了传统的机械差速器,通过控制内外驱动车轮轮毂电机达到差速的目的。ECU根据规划的行驶路径及Ackermann转向模型基于外侧车轮转速确定内侧车轮转速并通过CAN总线传递给MCU,MCU通过模糊PID控制算法控制轮毂电机转速。分析结果证明,该电子差速器可有效达到轮间差速的目的。  相似文献   

18.
通过汽车转向时稳定性分析阐明了四轮转向的优点。而鉴于轮毂电机在电动汽车上应用的诸多优点,及其功率受结构体积的限制,轮毂电机的应用将使汽车由性能更好的四轮驱动替代两轮驱动,它不但充分利用了地面对车轮的附着力和驱动力,而且结合用直线步进电机控制转向力的汽车转向系统,能更容易地实现全面改善转向性能的四轮转向系统。由于四轮驱动4WD与四轮转向4WS相结合的电子差速计算理论还有待完善,通过对轮毂电机运行的电子差速转向控制原理分析和数学推导,提出了4WD-4WS相结合的逆、同相控制模式的差速计算公式及四轮毂电机驱动结合四轮转向的电子差速实施结构原理。  相似文献   

19.
本系统采用飞思卡尔MC9S12G128MLL单片机为控制核心,控制小车直立循迹行驶。通过调节PWM输出分别单独控制左右两个车轮电机,利用加速度传感器、陀螺仪以及红外光电传感器的检测信号反馈给单片机,通过运算输出控制小车按照预定路线直立行驶。实验表明,本系统结构简单,在一定程度上体现了小车智能化运作,具有较好的鲁棒性。  相似文献   

20.
<正>设计一款智能送药小车,该小车采用模块化结构,包括路线循迹动力模块、病房号识别模块、双车通信模块等,通过MSP-432E401Y单片机为核心的最小系统控制,实现智能循迹行驶、智能识别病房号和智能调动单双车协同运输等功能,达到送药目的。具有安装便捷、系统操作简单、造价低廉、适用强等特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号