首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在平面解析几何中,我们研究了二元一次方程和直线的关系,二元二次方程和圆锥曲的关系。在这些问题研究过程中,我们可以看到直线、圆锥曲线把平面分成两个区域,而且这两个区域中所对应的点,都有一定的属性。而直线、圆锥曲线刚好是区域的边界。例如:直线l:ax by c=0把平面分成两部分(如图1)。对  相似文献   

2.
解题时,若能很好地利用点与圆锥曲线的位置关系,可使一些问题化繁为简,化难为易,有时还会收到出奇制胜的功效。1.点与圆锥曲线位置关系的性质圆锥曲线将平面分成两部分或三部分,其中含焦点的平面区域称为圆锥曲线的内部,不含焦点的平面区域称为圆锥曲线的外部。令圆锥曲线C的方程为(fx,y)=0,点p0的坐标为(x0,y0)。性质1点p0在曲线C的内部的充要条件是(fx0,y0)<0。性质2点p0在曲线C上的充要条件是(fx0,y0)=0。性质3点p0在曲线C的外部的充要条件是(fx0,y0)>0。以上三个性质的证明都比较容易,在此略。2.解一类直线和圆锥曲线的位置关系问题例…  相似文献   

3.
在圆锥曲线的很多性质中,常常出现有一对活跃的点A(m,0)和B(a~2/m,0),这一对点总是同时出现在圆锥曲线的对称轴上,形影不离,相伴而行,我们把这一对特殊的点形象地称作圆锥曲线的“伴侣点”.圆锥曲线的“伴侣点”在我们研究圆锥曲线的性质中具有重要的地位,蕴涵着圆锥曲线许多有趣的性质.  相似文献   

4.
在圆锥曲线的很多性质中,常常出现有一对活跃的点 A(m,0)和 B(a~2/m,0),这一对点总是同时出现在圆锥曲线的对称轴上,形影不离,相伴而行,我们把这一对特殊的点形象地称作圆锥曲线的“伴侣点”.圆锥曲线的“伴侣点”在我们研究圆锥曲线的性质中具有重要的地位,蕴涵着圆锥曲  相似文献   

5.
<正> 本文探讨在圆锥曲线上求一点,使其到一定点和一焦点(或圆心)的距离之和最小、或距离之差(绝对值)最大的问题. 圆锥曲线将平面分成两部分,我们称含焦点的区域为圆锥曲线的内部,不含焦点的区域为圆锥曲线的外部.以下讨论定点在曲线内  相似文献   

6.
圆锥曲线问题中一对奇异的“伴侣点”   总被引:2,自引:0,他引:2  
在圆锥曲线的很多性质中,常常出现一对活跃的点A(m,0)和B((a~2)/m,0),这一对点总是同时出现在圆锥曲线的对称轴上,形影不离,相伴而行,我们把这对特殊的点形象地称作圆锥曲线的“伴侣点”.圆锥曲线的“伴侣点”在我们研究圆锥曲线的性质中具有重要的地位,蕴涵着圆锥曲线许多有趣的性质.  相似文献   

7.
圆锥曲线是平面解析几何的重点内容,而圆锥曲线定义又是圆锥曲线的基础,它不仅反映了这些曲线的本质,而且也是我们推导标准方程的依据和解决有关问题的一把钥匙,高中生由于多年养成的学习习惯,对定义往往只满足于简单的记忆,而把注意力放在解题上,针对学生这一实际情况,在圆锥曲线定义的教学中笔者着重做了以下两点工作。  相似文献   

8.
圆锥曲线是平面解析几何研究的主要对象。如果把圆锥曲线定义中的关键词“和(或差)”换为“平方和(或平方差)”,那么动点的轨迹或者仍然是圆锥曲线,或者是直线;一条直线,只要不与抛物线的对称轴及双曲线的渐近线平行,那么它与圆锥曲线相切的充要条件是它们只有一个公共点。这是圆锥曲线有别于其它二次曲线的一个重要特征;圆锥曲线也有类似于平面几何中切割线定理的表达式,这些表达式揭示了圆锥曲线上任意一点与共对称轴上特殊点之间的一种特殊关系。了解上述三个结论,对于进一步研究圆锥曲线的性质是十分有益的。  相似文献   

9.
在圆锥曲线中,焦半径是一个很重要的几何量,它在解题中有着广泛的应用,故值得我们进一步总结和研究.为此,本文介绍形式多样、多姿多彩的焦半径的表达式,供同行参考.形式1P(x0,y0)是圆锥曲线C;:b2x2+a’y‘一a’b’(a>b>o)或C。;b’x’-a‘y’一a’b’(a>O,b>O)上的任一点,凤(-c,o),几件,O)是左、右焦点,圆锥曲线的离心率是。,则这种形式是大家都熟悉的,证明从略.形式2设E,F是圆锥曲线Q:卜X‘+a*一a’尸(a>b>O)或Q·尸。’-a*一a’尸(a>O,b>O)的两个焦点,点P在圆锥曲线上,c,e分…  相似文献   

10.
“圆锥曲线”是平面解析几何中的重点内容之一,而圆锥曲线中的“中点弦”问题又是直线与圆锥曲线关系中的重要内容,本文试图从圆锥曲线的中点弦方程、存在性及其应用展开研讨. 1 圆锥曲线的中点弦概念 定义 设:(,)0Cfxy=为二次曲线,0(,Px 0)y为平面上的点,若直线l与c交于AB,而A  相似文献   

11.
设f(x,y)=0为平面内的一条直线或非退化的实圆锥曲线。那末f(x,y)>0(或<0)表示平面上被上述直线或曲线所划分的某一区域。关于直线或曲线划分平面为区域的一些结论,在解题中常常被用到,但是都未证明。本文用一个较为简明的初等方法,证明这些结论。  相似文献   

12.
如果我们约定:在直角坐标平面上,含有焦点的区域为圆锥曲线的内部(其中圆的内部指含有圆心的区域)那么容易得到:点P(r_0.y_0)在圆r~2 y~2=r~2内部的充要条件是r_0~2 y_0~21;在抛物线y~2=2pr内部的充要条件是y_0~2<2pr.[若把条件中的“>”(“<”)号改为“<”(“>”)号,则条件变为点P在圆锥曲线外的充要条件,证明从略].  相似文献   

13.
各种数学资料中 ,经常出现如下一类问题 :点 M为圆锥曲线上一动点 ,求它到圆锥曲线的一个焦点 F和平面上一定点 A的距离和的最值 .大多数学生对这类问题感到困难 ,不知如何入手 .本文利用圆锥曲线的定义巧妙地求出这类问题 .1 椭圆、双曲线、抛物线中的有关结论1.1 椭圆结论 1 设椭圆 x2a2 + y2b2 =1(a >b>0 )的左、右焦点分别为 F1 、F2 ,平面上一定点 Q(x0 ,y0 ) ,M为椭圆上任意一点 .(1)定点 Q(x0 ,y0 )在椭圆内部 (即 x20a2 + y20b2<1) ,则 | MF2 | + | MQ|的最小值是 2 a -| QF1 | ;最大值是 2 a + | QF1 | .(2 )定点 Q(x0 ,…  相似文献   

14.
王峰晨 《数学教学通讯》2007,(3):63-64,F0003
知识:二元一次不等式Ax By C>0(<0)在平面直角坐标系中表示直线Ax By C=0在某一侧面所有点组成的平面区域.方法:由于在直线Ax By C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax By C所得实数的符号都相同,所以只需在此直线的某一侧取某一个特殊点(x0,y0),从Ax0 By0 C的正负即可判断Ax By C>0(<0)表示直线哪一侧的平面区域.我们可以用二元一次不等式表示平面区域的方法来分析圆,椭圆,抛物线,双曲线把平面分成的平面区域,得到如下结论.结论1:对于圆x2 y2=r2及平面内任一点P(x0,y0),把点P(x0,y0)代入x2 y2,当x02 y02=r2时,点P(x0,y0)…  相似文献   

15.
若圆锥曲线Γ的一个顶点为A ,与A不同的两动点M、N在曲线上 ,且∠MAN是直角 ,我们把线段MN叫做顶点A上的直角∠MAN所对的弦 ,即“顶点直角弦” ,笔者经探究发现二次曲线的顶点直角弦有一个耐人寻味的性质 ,这一性质揭示了二次曲线的一个共同的几何特征。命题 1 若M、N是抛物线 y2 =2 px(p >0 )上的图 1两动点 ,且满足OM⊥ON ,(O为坐标原点 ) ,求证 :直线MN过定点H (2 p ,0 )。(证略 )该命题的结论 ,启发笔者不断思考 :若把命题 1中的抛物线 ,改为椭圆、双曲线等圆锥曲线 ,是否有类似的性质呢 ?即圆锥曲线的一…  相似文献   

16.
我们知道,圆把平面分成了圆内和圆外两个区域,椭圆、抛物线、双曲线把平面分成了含焦点和不含焦点的两个区域。这些区域可以用关于x、y的二元二次不等式来表示。因此,有关二元二次不等式的问题可以运用圆锥曲线区域的直观性来求解。下面举例予以说明。  相似文献   

17.
圆锥曲线中直线和圆锥曲线结合在一起的题目较多,下文主要阐述了用数形结合思想来解决两类问题.一、直线的条数我们在学习圆锥曲线的过程中,遇到了这样的问题:例1过点A(0,2)可以作4条直线与双曲线x~2-y~2/4=1有且只有一个公共点.这个结论可以引申:平面直角坐标系中任  相似文献   

18.
笔者近阶段在几何概型课上讲到线段的端点与区域的边界的虚实问题时,我们说由于刚好取到某点的概率为0,所以我们在算几何概型时不用在乎边界的虚实.讲到这儿时班里的丁宁同学就在课堂上大声和我唱“对台戏”了:“刚好取到一个点的概率是0,而线段和平面是由点所构成,那么,把这些无数个0加起来还是0,从而取在一条线段上或在一个区域上的概率都为0了!”  相似文献   

19.
人教版高中数学第二册(上)第八章《圆锥曲线方程》涉及三类圆锥曲线的统一定义,即圆锥曲线第二定义:平面内与一定点F和它到定直线的距离的比是常数e的点的轨迹,叫圆锥曲线,点F叫做圆锥曲线的焦点,  相似文献   

20.
文[1]、[2]提出的几种圆锥曲线的切线的几何作图都是以先作出焦点为切线几何作法的必要条件。本文给出一种不一定借助焦点的圆锥曲线的切线的几何作法。 为作图方便,我们把“圆锥曲线的对称轴的几何作图”作为读者已知的基本作图问题而直接引用(见文[2])。另外过已知点作圆锥曲线的切线,有两种情况,就是点在曲线上和点不在曲线上,点不在曲线上时所指的点是使切线存在的点  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号