首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
数学思想是研究和解决数学问题和有关实际问题的基本指导思想.求解数学问题时,若能正确地运用数学思想,则可提高解题效率.本文举例介绍在求解三角问题时的常用数学思想.一、函数思想例1已知x3+sinx-2a=0,x∈[-π2,π2],4y3+sinycosy+a=0,y∈[-π4,π4],求sin(x+2y)的值.分析:从已知条件所具有的特征出发,可构造一个新的函数f(x)=x3+sinx,利用该函数的单调性,找出x与2y的关系,从而获得解答.解:令函数f(x)=x3+sinx,由x3+sinx-2a=0,得2a=x3+sinx=f(x).又由4y3+sinycosy+a=0,得2a=-8y3-2sinycosy=(-2y)3+sin(-2y)=f(-2y),∴f(x)=f(-2y),∵x,-2y…  相似文献   

2.
我们知道,asinx+bcosx=a2+b2sin(x+φ),其中ab≠0,tanφ=ab,这个公式叫做辅助角公式.该公式可将异名三角函数化为同名三角函数,在解题中具有广泛的应用.现举例说明,以引起同学们的重视.一、求最值例1当-2π≤x≤2π时,函数f(x)=sinx+3cosx的()(A)最大值是1,最小值是-1(B)最大值是1,最小值是-21(C)最大值是2,最小值是-2(D)解最大值是2,最小值是-1f(x)=sinx+3cosx=2sinx+3π,因为-2π≤x≤2π,所以-6π≤x+π3≤65π,所以-21≤sinx+3π≤1,所以-1≤f(x)≤2·故选(D).例2求函数y=sin2+2sinx·cosx+3cos2x的最小值,并写出使函数y取最小值的解x…  相似文献   

3.
一、利用三角函数的性质求最值1.若函数形如y=asinx+b(或y=acosx+b),可直接利用函数的下列性质来求解:|sinx|≤1,|cosx|≤1.例1求函数y=sin(x-π6)cosx的最值.解析y=sin(x-π6)cosx=12[sin(2x-π6)-sinπ6]=12sin(2x-π6)-41.当sin(2x-π6)=1时,ymax=21-14=41;当sin(2x-π6)=-1时,ymin=-21-41=-43.2.若函数形如y=acssiinnxx++db(或y=acccoossxx++db),先逆向解得sinx(或cosx)的表达式,再结合性质|sinx|≤1(或|cosx|≤1)来求解.例2求函数y=8cos2x+83cos2x+1的最值.解析由原式逆向解得cos2x=38y--y8,由0≤cos2x≤1,得0≤8-y3y-8≤1,解…  相似文献   

4.
一、直接法例1已知f(x)=x2(x≥0)x(x<0),g(x)=x(x≥0)-x2(x<0),则x<0时,f[g(x)]为()(A)-x(B)-x2(C)x(D)x2解:当x<0时,g(x)=-x2<0,所以f[g(x)]=g(x)=-x2,选(B).求复合函数的解析式,先求内层函数,再求外层函数,另外,分段函数要注意变量的范围.二、换元法例2已知f(1-cosx)=sin2x,求f(x).解:令1-cosx=t则cosx=1-t,-1≤1-t≤1,所以0≤t≤2.所以f(t)=1-(1-t)2=-t2+2t(0≤t≤2)所以f(x)=-x2+2x(0≤x≤2)三、配方法例3f(x-1x)=x2+x12.求f(x).解:f(x-1x)=x2+x12=(x-1x)2+2,所以f(x)=x2+2.四、待定系数法例4已知f(x)=3x-1,f[h(x)]=g(x)=2x+3,h(x)为x…  相似文献   

5.
1.求方程的根 例1 求满足方程2sin2x sinx-sin2x=3cosx的锐角x的值.(03年湖南省高数竞) 分析 对于同一单调区间内的两个变量x1,x2,若f(x1)=f(x2),则必有x1=x2. 解 因为 x为锐角,所以 cosx≠0.方程两边同除以cosx得 2sinx·tanx tanx-2sinx=3,即 (2sinx 1)(tanx-1)=2.因为 函数f(x)=(2sinx 1)(tanx-1)在(0,π/4)内f(x)<0,在[π/4,π/2)内严格单调递  相似文献   

6.
在求解三角函数有关问题时,如果能利用三角函数的图象特征解题,将起到事半功倍的作用.下面举例说明.例1如果函数y=sin2x+acos2x的图象关于直线x=π8对称,那么a=.解析:利用正弦余弦函数的图象当自变量取对称轴时函数值取得最大或最小值这一特征得:|sin2.π8+acos2.π8|=a2+1=|22+22a|,解得a=1.例2已知函数f(x)=Asin(ωx+φ)(x∈R)(A>0,ω>0,-π<φ≤π)的图象在y轴右侧的第一个最高点(函数取最大值的点)为M(2,22),与x轴在原点左侧第一个交点为N(-1,0),求函数f(x)的解析式.图1解析:由y=sinx的图象可知,从图象与x轴的交点到达图象最高点(在同…  相似文献   

7.
一、选择题1.设sinα=-35,cosα=54,那么下列的点在角α的终边上的是().A.(-3,4)B.(-4,3)C.(4,-3)D.(3,4)2.下列四组函数f(x)与g(x),表示同一个函数的是().A.f(x)=sinx,g(x)=xsxinxB.f(x)=sinx,g(x)=1-cos2xC.f(x)=1,g(x)=sin2x+cos2xD.f(x)=1,g(x)=tanxcotx3.tanx+tany=0是tan(x+y)=0的().A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分又不必要条件4.要得到y=sin2x-π3的图象,只需将y=sin2x的图象().A.向左平移3πB.向右平移3πC.向左平移6πD.向右平移6π5.若α、β∈0,π2,则().A.cos(α+β)>cosα+cosβB.cos(α+β)>s…  相似文献   

8.
一、利用三角函数的有界性利用正弦函数、余弦正数的有界性:|sinx|≤1,|cosx|≤1,可求形如y=Asin(ωx+φ),y=Acos(ωx+φ),(A≠0,φ≠0)的函数的最值.例1.(2000年全国高考题)已知函数y=12cos2x+3√2sinxcosx+1,x∈R,当函数y取得最大值时,求自变量x的集合.解:y=14(2cos2x-1)+14+3√4(2sinxcosx)+1=14cos2x+3√4sin2x+54=12sin(2x+π6)+54.y取得最大值必须且只需2x+π6=π2+2kπ,k∈Z即x=π6+kπ,k∈Z,所以当函数y取得最大值时,自变量x的集合为{x|x=π6+kπ,k∈Z}.二、转化为二次函数例2.求函数y=f(x)=cos22x-3cos2x+1的最值.解:∵f…  相似文献   

9.
数学问答     
1.已知函数f(x)=(sinx cosx)22 2sin2x-cos22x,(1)求此函数的定义域、值域,(2)若f(x)=2,-4π相似文献   

10.
1 试题及标准答案 题目 设函数f(x) =ax+cos x,x∈[0,π]. (I)讨论f(x)的单调性; (Ⅱ)设f(x)≤1+sin x,求a的取值范围. 标准答案(I)f1(x)=a-sin x. (i)当a≥1时,f1(x)≥0,且仅当a=1,x=π/2时,f1(x)=0,所以f(x)在[0,π]是增函数; (ii)当a≤0时,f1(x)≤0,且仅当a=0,x=0或x=π时,f1(x)=0,所以f(x)在[0,π]是减函数;  相似文献   

11.
一、分段函数的反函数分段函数的反函数一定也是分段函数,具体求时,一般是把每一段当作单个函数来求,最后写成分段函数的形式.在这个过程中要注意函数的定义域、值域与其反函数的值域、定义域的对应关系.例1设函数f(x)=-log3(x 1),x∈(6, ∞),3x-6,x∈(-∞,6]的反函数为f-1(x),若f-119=a,则f(a 4)=.解当x>6时f(x)<0,x≤6时f(x)>0.又f-119=a,∴f(a)=91,∴3a-6=91,解得a=4,∴f(a 4)=f(8)=-log3(8 1)=-2.例2求函数f(x)=x2-1,x∈[0,1),239-x2,x∈[-3,0)的反函数.解由y=x2-1(0≤x<1),解得x=1 y(-1≤y<0).又由y=239-x2(-3≤x<0)得x=-9-49y2(0≤y<2…  相似文献   

12.
例1求y=cosx+!3sinx,x∈π#6,23π$的值域.思路:形如y=asinx+bcosx的函数通常转化成y=!a2+b2sin(x+θ)的形式.解:y=cosx+!3sinx=2sin(x+π6).由x∈%π6,23π&,得x+π6∈%π3,56π&.∴21≤sin(x+π6)≤1,故1≤y≤2.即原函数的值域为[1,2].例2求y=sin2x-sinx+1,x∈π%3,34π&的值域.思路:形如y=asin2x+bsinx+c(a≠0)的函数,可利用换元法转化为在[-1,1]内的二次函数问题.即求y=at2+bt+c的值域.解:y=sin2x-sinx+1=(sinx-12)2+43.又x∈%π3,34π$,∴sinx∈!22,%$1.而(sinx-21)2+43在!22,%$1上单调递增,∴y∈3-!22,%$1.即所求值域为3-!22,%$1.例3…  相似文献   

13.
解含参数的一元二次方程实根分布问题时,同学们弄不清什么时候应该考虑用判别式Δ,因而产生解法错误或出现不必要的讨论.比如下面两例:例1已知关于x的方程x2+12-2ax+a2-1=0的两根均在区间[0,2]上,求实数a的取值范围.解考虑二次函数f(x)=x2+12-2ax+a2-1,其图象开口向上.由条件,有f(0)=a2-1≥0,f(2)=4+212-2a+a2-1≥0,0≤-1212-2a≤2,即a≤-1或a≥1,a∈R,14≤a≤94.∴1≤a≤94.辩析上述解法是错误的,因为3个条件f(0)≥0,f(2)≥0及0≤-1212-2a≤2仍不能保证原方程有实根,如图1,要正确解答原题,还必须在这3个条件之外附加Δ≥0,故正确结论是1≤…  相似文献   

14.
正弦函数y=Asin(ωx φ)是三角函数的重要内容,历年来都是高考命题的热点.现结合去年全国各地高考试题,根据考查正弦函数的不同内容,进行分类,并探讨其各自不同解法.1.确定函数最小正周期正弦函数y=Asin(ωx φ)的最小正周期为T=2π|ω|.【例1】已知函数y=12sinx πA(A>0)的最小正周期为3π,则A=.解:∵y=12sinx πA=12sin(1Ax πA)(A>0)∴其最小正周期为T=2π1A=2Aπ.则2Aπ=3π故A=32.【例2】函数f(x)=cos2x-23sinxcosx的最小正周期是.解:∵f(x)=cos2x-23sinxcosx=cos2x-3sin2x=-2sin(2x-π6)∴其最小正周期为T=2π2=π.2.求函数…  相似文献   

15.
复习三角函数知识的第一个目标是把所给的三角函数式通过适当的变形(三角变形、代数变形)化为y=Asin(ωx+)+a或y=Acos(ωx+)+a(其中A≠0,ω≠0)的形式,再求它的最小正周期、最大值(或最小值)和单调区间,画出它的图象.这类试题在近几年的高考试卷中经常出现.请看下面的高考题.1.(2003年全国高考题)函数y=2sinx(sinx+cosx)的最大值是()A.1+2√B.2√-1C.2√D.22.(2003年全国高考题)已知函数f(x)=2sinx(sinx+cosx).(Ⅰ)求函数f(x)的最小正周期和最大值;(Ⅱ)在给出的直角坐标系中,画出函数y=f(x)在区间犤-π2,π2犦上的图象.3.(2003年北京…  相似文献   

16.
一、选择题(每小题6分,共36分)1.设(1+x+x2)n=a0+a1x+…+a2nx2n.求a2+a4+…+a2n的值为().(A)3n(B)3n-2(C)3n2-1(D)3n2+12.若sinx+siny=1,则cosx+cosy的取值范围是().(A)[-2,2](B)[-1,1](C)[0,3](D)[-3,3]3.设f1(x)=2,f2(x)=sinx+cos2x,f3(x)=sinx2+cos2x,f4(x)=sinx2.上述函数中,周期函数的个数是().(A)1(B)2(C)3(D)44.正方体的截平面不可能是:①钝角三角形,②直角三角形,③菱形,④正五边形,⑤正六边形.下述选项正确的是().(A)①②⑤(B)①②④(C)②③④(D)③④⑤5.已知a、b是两个相互垂直的单位向量,而|c|=13,c·a=3,c·b=4.则对于任…  相似文献   

17.
含参变元的问题求解是中学数学教学中的难点,本文试图探讨一类通过构造函数、分析图象特征,可以利用二次函数图象作出简易解答的问题的解题规律。例1 已知方程asin~2x+sinx-a-2=0,其中a是不为0的可变常数,x∈[0,2π),试根据a的变化讨论方程的解。分析:按惯例,用求根公式 sinx=(-1±(4a~2+8a+1)~(1/2))/2a,然后根据|(-1±(4a~2+8a+1)~(1/2))/2a|≤1来讨论解的情况,这种解法比较麻烦。现试构造二次函数f(x)=ax~2+x-a-2f(x)=a(x~2-1)+(x-2),因为对于任意a,函数通过两个定点(1,-1),(-1,-3),作出图象,使原方程有解的函数图象必须如下所示,根据图象性质可得出有解  相似文献   

18.
错在哪里     
1.已知函数f(x)=ax+1/x+2在(-2,+∞)内单调递减,求实数a的取值范围. 错解:f(x)=2a-1/(x+2)2由题意得f'(x)≤0在(-2,+∞)内恒成立,即2a-1/(x+2)2≤0在(-2,+∞)内恒成立,故a≤1/2.  相似文献   

19.
<正>问题(2018年高考理科数学全国(Ⅰ)卷第16题)已知函数f(x)=2sinx+sin2x,则f(x)的最小值是______.解法赏析思路1f(x)=2sinx+sin2x,由周期函数不妨设x∈[0,2π],f'(x)=2cosx+2cos2x=2(2cos2x=2(2cos2x+cosx-1)=2(2cosx-1)(cosx+1).  相似文献   

20.
1问题导出例1(2012年高考福建卷·文22)已知函数f(x)=ax sin x-3/2(a∈R),且在[0,π/2]上的最大值为π-3/2(Ⅰ)求函数.f(x)的解析式;(Ⅱ)判断函数f(x)在(0,π)内的零点个数,并加以证明.本题通过基本素材x,sinx搭建考查平台,考点涉及零点,最值,单调性,解析式等基础知识,考查了导数在研究函数中的应用,考查函数与方程思  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号