首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
构造法解题在近年高考、竞赛中时有出现常见的有构造函数、构造不等式、构造数列、构造几何图形等,本文将通过具体题目来说明. 一、构造函数 例 1 设f(x)=x3-6x2+9x-14,f(m)=1,f(n)=-1,求m+n的值。 解:f(x)=(x-2)3+3(x-2),∴(m-2)3+3(m-2)=1①(n-2)3+3(n-2)=-1②设F(x)=x3+3x易知F(x)=x3+3x是单调递增的奇函数,∴F(m-2)=-F(n-2)=F(2-n)∴m-2=2-n,∴m+n=4.  相似文献   

2.
针对数学问题的题型特点,构造与之相关的辅助数式、图形,甚至理想模型等以求另辟捷径的解题方法通常称之为构造法.下面举几个例子说明“构造法”在数学解题中的运用:例1求证:(1 2005)2004-(1-2005)20042005是整数.分析若以x代换2005,分子成为一个多项式,可构造辅助函数来研究它的特点.证明设f(x)=(1 x)2004-(1-x)2004.∵f(-x)=(1-x)2004-(1 x)2004=-f(x),∴f(x)是奇函数.因此f(x)只含x的奇次项,于是f(xx)为只含x的偶次项(包括常数项)的整系数多项式.以x=2005代入可题式为整数.例2x、y是取任意实数的2个变量,试求函数f(x,y)=x2 y2-2x-2y 2 x2…  相似文献   

3.
<正>抽象函数因题目中没有具体的解析式,解题难度很大。如果能利用题目的条件,联想学过的函数类型,构造出相应的函数模型,则可快速解答这类题目。一、根据定义域构造函数(1)定义域为(-∞,+∞)时,构造f(x)=kx+b(k≠0)或f(x)=ax~3+bx~2+cx+d(a≠0)。(2)定义域为(m,+∞)时,构造f(x)=log_a(x-m)。(3)定义域为(-∞,m)时,构造f(x)=  相似文献   

4.
<正>构造函数法是一种常用的解题方法,比如函数与方程、不等式问题,小题中构造可导函数解不等式是常见题型,如果巧妙地构造函数,进而研究函数的性质,问题就会迎刃而解,下面就几种题型和大家一起交流一下。一、构造f(x)±g(x)型例1定义在R上的函数f(x),其导函数f'(x)满足f'(x)>1,且f(2)=3,则关于x的不等式f(x)相似文献   

5.
一、求函数解析式【例1】设y=f(x)为三次函数,且图象关于原点对称,当x=1时,f(x)取得极小值-2,求f(x)的解析式.解:设f(x)=ax3 bx2 cx d(a≠0),由于其关于原点对称,为奇函数.故b=d=0.所以f(x)=ax3 cx,由f′(x)=3ax2 c,且x=1时,f(x)有极小值-2得f′(1)=3a c=0,f(1)=a c=-2,解之,得a=1,c=-3,所以f(x)=x3-3x.二、求函数单调区间与判断函数单调性【例2】求f(x)=x3 3x的单调区间.分析:首先确定f(x)的定义域,再在定义域上根据导函数f′(x)的符号来确定f(x)的单调区间.解:f(x)的定义域为(-∞,0)∪(0, ∞)f′(x)=3x2-3x2=3(x2 1)(x 1)(x-1)x2由于当x<-…  相似文献   

6.
三次函数f(x)=ax3 bx2 cx d(a≠0)已经成为中学阶段一个重要的函数.本文给出并证明三次函数的三个性质,并例说性质的应用.函数f(x)=ax3 bx2 cx d(a≠0)的导函数为f/(x)=3ax2 2bx c.导函数的对应方程为f/(x)=0即3ax2 2bx c=0,其判别式Δ=4(b2-3ac).若Δ>0,设其两根为x1、x2,并设x1相似文献   

7.
由函数单调性的定义容易知道:(1)若函数f(x)在区间I上单调递增,且x1,x2∈I,则f(x1)x2;(3)若函数f(x)在区间I上单调,且x1,x2∈I,则f(x1)=f(x2)x1=x2;根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用的技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.下面举例说明这一思想在解题中的若干应用.一、求值例1设x,y为实数,且满足(x-1)3+1997(x-1)=-1(y-1)3+1997(y-1)=1,则x+y=.解:由已知条件,可得:(x-1)3+1997(x…  相似文献   

8.
结论函数f(x)=daxc b(不妨设a>0),若b2=amd2(m∈R),则f(x) f(m-x)=bc.(※)证明f(x) f(m-x)=cdax b dam-cx b=(d2[adm( a bm-2)x badx)(a x2 b]acm-x)=d(am-x ax 2db)cbd(ax am-x d2abmd b2)因为b2=amd2,所以d2abmd b2=2db,所以f(x) f(m-x)=bc.特例(1)若d=1,则上面的结论(※)可叙述为:函数f(x)=ax c b(a>0),若b2=am,则f(x) f(m-x)=bc.(2)若m=0,b2=1,则上面的结论(※)可叙述为:函数f(x)=axc b(a>0),若b2=1,则f(x) f(-x)=bc.(3)若c=1,d=1时,则上面的结论(※)可叙述为:函数f(x)=ax1 b(a>0),若b2=am,则f(x) f(m-x)=1b.应用(函数的以上性质可应…  相似文献   

9.
求反函数是高中数学的一个难点,在求解有关反函数的题时,只要灵活应用互反函数的性质,我们则可以对反函数“避而不求”,下面具体介绍不求反函数巧解题的方法:一、求函数值【例1】若函数f(x)=x x2,则f-1(13)=.分析:利用反函数的定义域是原函数的值域,即有f-1(a)=b f(b)=a.解:由x x2=13,解得x=1,所以f-1(13)=1.二、求解析式【例2】已知f(x)=4x 5,求函数f-1(2x 3)的反函数的解析式.分析:利用互反函数的性质:y=f(x)的定义域为A,值域为B,则有f-1[f(x)]=x,x∈A,f[f-1(x)]=x,x∈B则可不求反函数快速解题.解:设y=f-1(2x 3),则f(y)=f[f-1(2x 3)]=2x…  相似文献   

10.
"构造法"解题,就是构造数学模型解决问题.在中学的数学竞赛和高考题目中,它的应用十分广泛,特别有些技巧性强的题目,学生往往手足无措,难于下手.本文举例说明"构造法"解题的几种思维途径,供参考一、构造函数例1已知函数f(x)=x~2+2x+alnx.当t≥1时,不等式f(2y-1)≥2f(t)-3恒成立,求实数a的取值范围.解析:不等式f(2f-1)≥2f(t)-3(?)2t~2-  相似文献   

11.
文献[1]~[3]对二次函数f(x)=x2+bx+c的迭代进行了探讨,其中文献[2]、[3]得到了关于方程f2(x)=x在特殊情形下根的一个结论:设f(x)=x2+bx+c,记Δ0=(b-1)2-4c,若方程f(x)=x有2个不等实根,则1)当0<Δ0<4时,f2(x)=x只有2个不等实根;2)当Δ0>4时,f2(x)=x有4个不等实根.方程f2(x)=x中的f2(x)为f2(x)=f(f(x)),一般地有fn(x)=f(fn-1(x)).本文将考虑一般二次函数f(x)=ax2+bx+c(其中a≠0且a,b,c∈R)的迭代,用初等方法给出  相似文献   

12.
高考数学信息题是从所给材料中获取信息,并用于新问题解决的一类新题型.由于这类题立意新颖、构思精巧、解法灵活,能突出对考生的阅读理解能力、观察能力、获取信息与处理信息能力和独立研究探索问题能力的考查,因此一直是高考中的热点,备受命题者的青睐.本文结合实例对数学信息题进行分类解读.一、表格型信息题表格能集中给出解题信息,简洁明了.理解表中内容,根据数据特征找出数量关系进行计算或推理,是求解表格信息题的关键.【例1】函数f(x)=ax3+bx2+cx+d的部分数值如下:x-3-2-10123456y-80-2404001660144280则函数y=lgf(x)的定义域为.解析观察表中有三个x值使f(x)=0,联想二次函数的零点解析式y=a(x-x1)(x-x2),因而不难设出f(x)的解析式,进而求之,再解高次不等式即可求出函数y=lgf(x)的定义域.设f(x)=a(x+1)(x-1)(x-2),而f(0)=4,∴a=2,∴f(x)=2(x+1)(x-1)(x-2).要使y=lgf(x)有意义,则有f(x)=2(x+1)(x-1)(x-2)&gt;0,由数轴标根法解得-12.∴函数y=lgf(x)的定义域...  相似文献   

13.
1配凑法例如,已知f(x 1)=x~2-3x 2,求f(x).因为f(x 1)=(x 1)~2-5(x 1) 6,所以f(x)=x~2-5x 6.2换元法例如,已知f(xx 1)=x2x 21 1x,求f(x).设xx 1=t,则x=t1-1,代入已知条件得f(t)=1 (t-1)2 (t-1)=t2-t 1,故f(x)=x2-x 1.3待定系数法例如,已知f[f(x)]=4x 3,求一次函数f(x).设一次函数f(x)=kx b,代入已知条件得f[f(x)]=f(kx b)=k(kx b) b=k2x bx b,比较系数得k=2,b=1或k=-2,b=-3所以f(x)=2x 1或f(x)=-2x-3.4方程组法例如,已知函数f(x)的定义域为{x|x≠0},满足f(x)-2f(1x)=x-1,求f(x).将原方程的x变量换成1x,则有f(1x)-2f(x)=1x-1,与原方程联立方…  相似文献   

14.
运用导数研究函数的单调性、极值、最值以及证明不等式,是一种可行性强、操作性简单的方法.一、求函数的解析式【例1】 设y = f(x)为三次函数,且图像关于原点对称,当 x =12时的极小值为-1,求函数f(x)的解析式.解析:设f(x)= ax3 bx2 cx d(a≠0),因为其图像关于原点对称.即f(- x) =- f(x)得ax3 bx2 cx d= ax3 - bx2 cx - d(x∈R),∴b =0,d =0,即f(x) = ax3 cx,由f′(x) =3ax2 c,依题意f′(12) =34a c =0,f(12) =18a c2=-1解之,得a =4,c =-3.故所求函数的解析式为 f(x) = 4x3 -3x.二、求函数的单调区间【例2】 求函数f(x…  相似文献   

15.
函数奇偶性是函数的主要性质,在解题中运用很广泛,现就常见的几种类型举例如下: 一、利用奇偶性求值例1 已知f(x)=x5+ax3+bx-8,f(-2)=10,求f(2)的值. 解:∵定义域为R,设g(x)=x5+ax3+bx,因g(-x)=(-x)5+a(-x)3+b(-x)=-(x5+ax3+bx)=-g(-x).  相似文献   

16.
导数是高中数学新教材的内容,它作为解题有力的工具使某些问题的求解变得简便.本文选取2004年全国的高考试题,举例介绍应用导数解答高考题的常见类型,供大家参考.  一、求曲线的切线例1  曲线 y=x3 -3x2 +1 在点(1,-1)处的切线方程为(  ).A.y=3x-4    B.y=-3x+2C.y=-4x+3 D.y=4x-5解析  由函数 f(x)=x3 -3x2 +1 导数为f′(x)=3x2-6x,f′(1)=-3,因此得(1,-1)处的切线方程为:y-(-1)=-3(x-1),即y=-3x+2.二、研究函数的单调性例2  已知a∈R,求函数 f(x)=x2eax 的单调区间.解析  函数 f(x)的导数 f′(x)= 2xeax +ax2e…  相似文献   

17.
1待定系数法例1若f(x)=x2-mx+n,f(n)=m,f(1)=2,求f(x).解依题意:2,12,n mn n mm n-----++==解得m=-2,n=-1,∴()f x=x2+2x-1.注如果已知函数式的构造模式,通常根据题设用此法求出函数式的待定系数.2换元法例2已知f(x+1)=x+1,求f(x).解令x+1=t,则x=(t-1)2(t≥1),∵f(t)=(t-1)2+1(t≥1),即f(x)=t2-2t+2(x≥1).注如果已知复合函数f(g(x))的表达式,求f(x)的解析式;先令g(x)=t,得f(x),但值得注意的是在进行变量替换时,应求出新变量的取值范围,否则容易出现错误.3代入法例3设()1f x=1-x,求f(f(f(x)))的解析式.解∵(())11f f x=1-f(x)=1-1/(1-x)1x x…  相似文献   

18.
这是一堂关于函数表达式的习题课,教学对象是高一学生.问题:已知f(2x+1)=x2-2x,求f(x)与f(2x-1)的解析式.学生解法:设f(x)=ax2+bx+c(a≠0),则f(2x+1)=4ax2+(4a+2b)x+a+b+c=x2-2x.易得4a=1,4a+2b=-2,a+b+c=0,解得a=14,b=-32,c=54,所以f(x)=14x2-32x+54,f(2x-1)=x2-4x+3.师:为什么可以"设f(x)=ax2+bx+c(a≠0)"?生1:因为可以推测f(x)一定是二次函数.如果f(x)不是二次函数,则f(2x+1)的解析式也不会是二  相似文献   

19.
值此新世纪到来之际,本刊编辑部全体同仁向广大读者、作者拜年,恭祝大家身体健康,万事如意,事业有成!这里,我们组织了一组新年趣题,希望能给您带来一份乐趣.1.“中、数、月、刊”四个字分别代表不同的阿拉伯数字,用合适的数字代换它们,使下列等式成立.(1)(中 数 月 刊)3=中数月刊;(2)(中 数 月 刊)4=中数月刊.答:(1)(4 9 1 3)3=4913;(2)(2 4 0 1)4=2401.(陕西乾县杨汉中学 赵文涛)2.设f(x)(x∈R)是以4为周期的奇函数,求证:f(2001)=f(28)-f(75).证 ∵f(x)是奇函数,∴f(0)=f(-0)=-f(0),即f(0)=0.又由题设,易得f(2001)=f(500×4 1)=f(1),f(2…  相似文献   

20.
解题过程中 ,根据问题条件 ,构造合适的函数 ,利用熟知的函数的性质 (例如单调性、奇偶性 )可巧妙的解答近几年出现的高考及国内外数学竞赛试题 .一、巧解方程 (组 )例 1 解方程 ( x2 - 2 0 x + 38) 3 =x3 - 4x2 + 84 x- 152解 :原方程可变形为 ( x2 - 2 0 x + 38) 3 + 4( x2 -2 0 x + 38) =x3 + 4x构造三次函数 f ( x) =x3 + 4x从而原方程可化为 f ( x2 - 2 0 x + 38) =f ( x)因为 f ( x) =x3 + 4x在 R上单调递增所以 x2 - 2 0 x + 38=x即 x2 - 2 1x + 38=0解得 x1=2 ,x2 =19.例 2  ( 1997年高中数学联赛试题 )设 x,y为实数 ,且满足 ( x…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号