首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The phylogenetic position of hyoliths has long been unsettled, with recent discoveries of a tentaculate feeding apparatus (‘lophophore’) and fleshy apical extensions from the shell (‘pedicle’) suggesting a lophophorate affinity. Here, we describe the first soft parts associated with the feeding apparatus of an orthothecid hyolith, Triplicatella opimus from the Chengjiang biota of South China. The tuft-like arrangement of the tentacles of T. opimus differs from that of hyolithids, suggesting they collected food directly from the substrate. A reassessment of the feeding organ in hyolithids indicates that it does not represent a lophophore and our analysis of the apical structures associated with some orthothecids show that these represent crushed portions of the shell and are not comparable to the brachiopod pedicle. The new information suggests that hyoliths are more likely to be basal members of the lophotrochozoans rather than lophophorates closely linked with the Phylum Brachiopoda.  相似文献   

2.
The current aggregation-induced emission luminogens (AIEgens) sometimes suffer from poor targeting selectivity due to undesirable aggregation in the hydrophilic biosystem with ‘always-on’ fluorescence or unspecific aggregation in the lipophilic organelle with prematurely activated fluorescence. Herein, we report an unprecedented ‘amphiphilic AIEgen’ sensor QM-SO3-ER based on the AIE building block of quinoline-malononitrile (QM). The introduced hydrophilic sulfonate group can well control the specific solubility in a hydrophilic system with desirable initial ‘fluorescence-off’ state. Moreover, the incorporated p-toluenesulfonamide group plays two roles: enhancing the lipophilic dispersity, and behaving as binding receptor to the adenosine triphosphate (ATP)-sensitive potassium (KATP) on the endoplasmic reticulum (ER) membrane to generate the docking assay confinement effect with targetable AIE signal. The amphiphilic AIEgen has for the first time settled down the predicament of unexpected ‘always-on’ fluorescence in the aqueous system and the untargetable aggregation signal in the lipophilic organelle before binding to ER, thus successfully overcoming the bottleneck of AIEgens'' targetability.  相似文献   

3.
One of the more frequent activities in health sciences is the measurement of biological quantities. Frequently, when reading biomedical books and journals some confusion on the metrological meaning of biological quantities related to the concepts ‘concentration’ and ‘content’ may be observed. Classically, a concentration is an amount of any type per volume of liquid or gas system, whereas content is an amount of any type per mass of liquid or gas or solid system. However the concepts ‘concentration’ and ‘content’ alone are still ambiguous because, depending on the type of amount of the component (analyte) per volume or mass of a system, there are different types of concentrations and contents. This article attempts to give a clarification of these concepts, mainly based on international recommendations about nomenclature and terminology of metrology, chemistry and clinical laboratory sciences.  相似文献   

4.
Extreme El Niño events severely disrupt the global climate, causing pronounced socio-economic losses. A prevailing view is that extreme El Niño events, defined by total precipitation or convection in the Niño3 area, will increase 2-fold in the future. However, this projected change was drawn without removing the potential impacts of Coupled Model Intercomparison Project phase 5 (CMIP5) models’ common biases. Here, we find that the models’ systematic biases in simulating tropical climate change over the past century can reduce the reliability of the projected change in the Pacific sea surface temperature (SST) and its related extreme El Niño frequency. The projected Pacific SST change, after removing the impacts of 13 common biases, displays a ‘La Niña-like’ rather than ‘El Niño-like’ change. Consequently, the extreme El Niño frequency, which is highly linked to the zonal distribution of the Pacific SST change, would remain mostly unchanged under CMIP5 warming scenarios. This finding increases confidence in coping with climate risks associated with global warming.  相似文献   

5.
The reductionist approach to science seeks to understand the behaviour of systems by studying their individual components. It has been an enormously productive approach, but it is also widely acknowledged now that in some systems the behaviour of interest is an emergent property that cannot be discerned in the separate parts. Biology is replete with such examples, from the flocking of birds to the way metabolic processes in cells rely on a dynamic interplay of proteins and other components.Yet molecular systems do not have to be particularly complex before their properties become more than the sum of the parts. A classic example is the appearance of bulk-like metallic behaviour in small clusters of metal atoms only once they exceed a certain critical size. One of the most striking instances became apparent in 2001, when Ben Zhong Tang of the Hong Kong University of Science and Technology and his co-workers found that heterocyclic silicon-containing molecules called siloles become luminescent as nanoscopic aggregates even though the individual molecules in dilute solution do not emit light [1]. This looked like the opposite of the well-known phenomenon of concentration quenching, in which energy transfer between fluorescent (generally organic) molecules quenches the emission, an effect explained in 1955 [2]. Aggregation-induced ‘switching off’ is intuitively understandable, but ‘switching on’ due to aggregation was more surprising.Yet this effect of ‘aggregation-induced emission’ (AIE), as Tang and colleagues called it, was apparently seen, but not understood, much earlier [3]. In the 1850s, George Stokes noted that some inorganic complexes were fluorescent in the condensed, solid state but not in solution. At first, AIE was seen as a curiosity and deemed likely to be rare. However, subsequent research has shown not only that it is a rather common effect but also that it can be considered just one manifestation of a wide range of behaviours that arise from aggregation—leading to the proposed field of ‘aggregate science’, manifesting at the supramolecular level of small clusters or groups of molecules held together by relatively weak interactions. The field might be considered to illustrate George Whitesides’ notion of a chemistry ‘beyond the molecule’ [4], which bridges disciplines ranging from colloid science to crystal growth, nanotechnology, liquid crystals, photochemistry and molecular biology. At the same time, it echoes the famous insight of physicist Philip Anderson about emergent phenomena and the hierarchical nature of science: ‘More is different’ [5]. An ability to switch properties on and off by controlling intermolecular interactions and aggregation suggests various applications, from optical device technologies to targeted drugs for cancer therapy [6].NSR spoke to Ben Zhong Tang about the origins and possibilities of the field.

NSR: It seems you noticed AIE in 2001 by accident. How did it come about? Tang: Yes, it was serendipity. Development of new light emitters for the fabrication of organic light-emitting diodes was a hot topic at that time. We were trying to make new luminophores [light-emitting molecules] with high efficiencies and novel structures. Attracted by the aesthetically pleasing molecular structures of siloles, I asked my students to prepare various silole compounds. One day, a student told me that he could not see any luminescence when he used a UV lamp to excite the solution of the silole compound he had made. This surprised me, because I myself prepared a silole compound when I was a PhD student and I remember that its crystal was luminescent. I sensed something strange and immediately rushed to the lab. After careful verification and discussion with the student, we concluded that both of us were correct: the silole solution was not luminescent (his observation was right) but the silole powder was emissive (my memory was right). The non-luminescent molecular species in the dilute solution were induced to emit light through formation of aggregates in the solid state. We termed the process aggregation-induced emission or AIE.
A mesoscopic aggregate can have a property that its molecular species does not exhibit at all.—Ben Zhong Tang
Open in a separate windowBen Zhong Tang of the Hong Kong University of Science and Technology, China (Courtesy of Ben Zhong Tang). NSR: The phenomenon seemed to defy conventional expectations. Did you have trouble persuading others—or yourselves!—that it was real? Tang: I initially thought the student might have done something wrong, for the phenomenon he observed was totally unexpected. The common belief in the community of photophysics research is that luminescence from an organic dye generally weakens when its molecules are aggregated, an effect often referred to as aggregation-caused quenching or ACQ. I was shocked when I realized that the silole luminogen was showing an anti-ACQ effect. Still, I felt lucky to encounter something ‘abnormal’. No matter how odd a phenomenon seems, if it can be repeatedly observed, it must be real. We repeated our experiments many times and we were eventually convinced that the AIE effect was true. We had trouble, however, to understand why the silole luminogen behaved in such a way that was diametrically opposed to conventional ACQ. NSR: Are there any historical precedents—experiments in which this effect might have been glimpsed previously, but not recognized as such? Tang: When we published our first AIE paper in 2001, we thought the photophysical effect was unprecedented. However, we gradually found out that similar phenomena had been previously observed by other scientists. For example, in 1853 George Stokes reported in a paper that some inorganic platinocyanide salts ‘are sensitive’ (meaning luminescent in modern terminology) ‘only in the solid state’ but ‘their solutions look like mere water’. Sadly, he didn’t follow it up. Other people have made similar observations in different dye systems, which were, however, not recognized as AIE processes. Partially because of this, we had great difficulty in finding relevant reference papers. As a matter of fact, Stokes’ report, published in the mid-19th century, was not known to us until the middle of 2018. However, we are not surprised by those early works, for we understand that science progresses not in an abrupt but in a continuous way. George Smith articulated this: ‘Very few research breakthroughs are novel. Virtually all of them build on what went on before.’ A discovery is often a happenstance. We happened to have ‘rediscovered’ a very old but largely unnoticed phenomenon. Luckily, we grasped the opportunity to see more and farther by standing on the shoulders of giants.  相似文献   

6.
Food web and gene regulatory networks (GRNs) are large biological networks, both of which can be analyzed using the May–Wigner theory. According to the theory, networks as large as mammalian GRNs would require dedicated gene products for stabilization. We propose that microRNAs (miRNAs) are those products. More than 30% of genes are repressed by miRNAs, but most repressions are too weak to have a phenotypic consequence. The theory shows that (i) weak repressions cumulatively enhance the stability of GRNs, and (ii) broad and weak repressions confer greater stability than a few strong ones. Hence, the diffuse actions of miRNAs in mammalian cells appear to function mainly in stabilizing GRNs. The postulated link between mRNA repression and GRN stability can be seen in a different light in yeast, which do not have miRNAs. Yeast cells rely on non-specific RNA nucleases to strongly degrade mRNAs for GRN stability. The strategy is suited to GRNs of small and rapidly dividing yeast cells, but not the larger mammalian cells. In conclusion, the May–Wigner theory, supplanting the analysis of small motifs, provides a mathematical solution to GRN stability, thus linking miRNAs explicitly to ‘developmental canalization’.  相似文献   

7.
China has attached a great significance to bringing science to the public—known as kepu (科普, ‘science popularization’) or kexue chuanbo (科学传播, ‘science dissemination’)—in recent years, partly in response to its unprecedented push for innovation in science and technology. In 2018, it spent 16 billion yuan (US$2.3 billion) on such endeavours, nearly 80% of which was government funding, according to a survey conducted by the Ministry of Science and Technology. With one science-education venue for every million people, approximately 76 million visits were made to the country''s 518 general-science museums and 142 million visits were made to 943 museums dedicated to a specific subject matter, such as the Geological Museum of China.In a forum chaired by National Science Review’s executive editor-in-chief, Mu-ming Poo, scientists, journalists and public-information officers discussed the differences in science communication between China and developed nations, the challenges and opportunities of raising scientific literacy in China, how it has played out in a wide range of controversial topics, from stem-cell research to climate change, and the importance of international collaboration. Tao Deng Director of the Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China Hepeng Jia Science journalist and science-communication scholar at Soochow University, Suzhou, China Brian Lin Director of the Editorial Content Strategy, EurekAlert!, American Association of the Advancement of Science, Washington DC, USA Joy Ma Manager of the Editorial Content, EurekAlert!, American Association of the Advancement of Science, Washington DC, USA Lai Xu Former chief editor of Guokr.com, Beijing, China Shi Yan Deputy director of the China Research Institute for Science Popularisation, Chinese Association of Science and Technology, Beijing, China Mu-ming Poo (Chair) Director of the Insitute of Neuroscience, Chinese Academy of Sciences, Shanghai, China  相似文献   

8.
Essential hypertension (EH) is a multifactorial and complex disease with high rate of incidence and associated co-morbidities. Previous studies do not provide unanimous results for the risk of hypertension and association with Fok I genotype frequency and serum vitamin D levels. Hence, this study was undertaken to determine the status of Fok I vitamin D receptor (VDR) gene polymorphism along with vitamin D levels and blood pressure in patients with EH. Four hundred (200 controls and 200 cases of essential hypertension) participants from general Indian population were enrolled in this study. Peripheral blood samples were collected for genotyping Fok I-VDR gene polymorphism using PCR–RFLP method whereas 25-OH vitamin D levels in serum were quantified using high performance liquid chromatography (HPLC). Significantly reduced 25-OH vitamin D levels were observed in patients with EH (24.04 ± 8.62 vs 50.46 ± 15.46) compared to control subjects (p = 0.0001). Homozygous recessive genotype ‘ff’ frequency was increased by 8.06 fold (CI: 3.71–17.47, p = 0.0001) in patients with EH compared to dominant ‘FF’ genotype frequency. In conclusion, recessive ‘ff’ genotype frequency correlates with reduced serum vitamin D levels and results in significantly increased systolic and diastolic blood pressures leading to predisposition of EH.  相似文献   

9.
The super-high strength of single-layer graphene has attracted great interest. In practice, defects resulting from thermodynamics or introduced by fabrication, naturally or artificially, play a pivotal role in the mechanical behaviors of graphene. More importantly, high strength is just one aspect of the magnificent mechanical properties of graphene: its atomic-thin geometry not only leads to ultra-low bending rigidity, but also brings in many other unique properties of graphene in terms of mechanics in contrast to other carbon allotropes, including fullerenes and carbon nanotubes. The out-of-plane deformation is of a ‘soft’ nature, which gives rise to rich morphology and is crucial for morphology control. In this review article, we aim to summarize current theoretical advances in describing the mechanics of defects in graphene and the theory to capture the out-of-plane deformation. The structure–mechanical property relationship in graphene, in terms of its elasticity, strength, bending and wrinkling, with or without the influence of imperfections, is presented.  相似文献   

10.
Search ‘de novo protein design’ on Google and you will find the name David Baker in all results of the first page. Professor David Baker at the University of Washington and other scientists are opening up a new world of fantastic proteins. Protein is the direct executor of most biological functions and its structure and function are fully determined by its primary sequence. Baker''s group developed the Rosetta software suite that enabled the computational prediction and design of protein structures. Being able to design proteins from scratch means being able to design executors for diverse purposes and benefit society in multiple ways. Recently, NSR interviewed Prof. Baker on this fast-developing field and his personal experiences.  相似文献   

11.
The misfolding of amyloid-β (Aβ) peptides from the natural unfolded state to β-sheet structure is a critical step, leading to abnormal fibrillation and formation of endogenous Aβ plaques in Alzheimer''s disease (AD). Previous studies have reported inhibition of Aβ fibrillation or disassembly of exogenous Aβ fibrils in vitro. However, soluble Aβ oligomers have been reported with increased cytotoxicity; this might partly explain why current clinical trials targeting disassembly of Aβ fibrils by anti-Aβ antibodies have failed so far. Here we show that Au23(CR)14 (a new Au nanocluster modified by Cys-Arg (CR) dipeptide) is able to completely dissolve exogenous mature Aβ fibrils into monomers and restore the natural unfolded state of Aβ peptides from misfolded β-sheets. Furthermore, the cytotoxicity of Aβ40 fibrils when dissolved by Au23(CR)14 is fully abolished. More importantly, Au23(CR)14 is able to completely dissolve endogenous Aβ plaques in brain slices from transgenic AD model mice. In addition, Au23(CR)14 has good biocompatibility and infiltration ability across the blood–brain barrier. Taken together, this work presents a promising therapeutics candidate for AD treatment, and manifests the potential of nanotechnological approaches in the development of nanomedicines.  相似文献   

12.
Although molecular imaging probes have the potential to non-invasively diagnose a tumor, imaging probes that can detect a tumor and simultaneously identify tumor malignancy remain elusive. Here, we demonstrate a potassium ion (K+) sensitive dual-mode nanoprobe (KDMN) for non-invasive tumor imaging and malignancy identification, which operates via a cascaded ‘AND’ logic gate controlled by inputs of magnetic resonance imaging (MRI) and fluorescence imaging (FI) signals. We encapsulate commercial K+ indicators into the hollow cavities of magnetic mesoporous silica nanoparticles, which are subsequently coated with a K+-selective membrane that exclusively permits the passage of K+ while excluding other cations. The KDMN can readily accumulate in tumors and enhance the MRI contrast after systemic administration. Spatial information of the tumor lesion is thus accessible via MRI and forms the first layer of the ‘AND’ gate. Meanwhile, the KDMN selectively captures K+ and prevents interference from other cations, triggering a K+-activated FI signal as the second layer of the ‘AND’ gate in the case of a malignant tumor with a high extracellular K+ level. This dual-mode imaging approach effectively eliminates false positive or negative diagnostic results and allows for non-invasive imaging of tumor malignancy with high sensitivity and accuracy.  相似文献   

13.
There are health benefits from consuming cruciferous vegetables that release indole-3-carbinol (I3C), but the in vivo transformation of I3C-related indoles remains underinvestigated. Here we detail the post-ingestion conversion of I3C into antitumor agents, 2-(indol-3-ylmethyl)-3,3-diindolylmethane (LTr1) and 3,3-diindolylmethane (DIM), by conceptualizing and materializing the reaction flux derailing (RFD) approach as a means of unraveling these stepwise transformations to be non-enzymatic but pH-dependent and gut microbe-sensitive. In the upper (or acidic) gastrointestinal tract, LTr1 is generated through Michael addition of 3-methyleneindolium (3MI, derived in situ from I3C) to DIM produced from I3C via the formaldehyde-releasing (major) and CO2-liberating (minor) pathways. In the large intestine, ‘endogenous’ I3C and DIM can form, respectively, from couplings of formaldehyde with one and two molecules of indole (a tryptophan catabolite). Acid-producing gut bacteria such as Lactobacillus acidophilus facilitate the H+-promotable steps. This work updates our understanding of the merits of I3C consumption and identifies LTr1 as a drug candidate.  相似文献   

14.
Chang’E-4 landed in the South Pole-Aitken (SPA) basin, providing a unique chance to probe the composition of the lunar interior. Its landing site is located on ejecta strips in Von Kármán crater that possibly originate from the neighboring Finsen crater. A surface rock and the lunar regolith at 10 sites along the rover Yutu-2 track were measured by the onboard Visible and Near-Infrared Imaging Spectrometer in the first three lunar days of mission operations. In situ spectra of the regolith have peak band positions at 1 and 2 μm, similar to the spectral data of Finsen ejecta from the Moon Mineralogy Mapper, which confirms that the regolith''s composition of the landing area is mostly similar to that of Finsen ejecta. The rock spectrum shows similar band peak positions, but stronger absorptions, suggesting relatively fresh exposure. The rock may consist of 38.1 ± 5.4% low-Ca pyroxene, 13.9 ± 5.1% olivine and 48.0 ± 3.1% plagioclase, referred to as olivine-norite. The plagioclase-abundant and olivine-poor modal composition of the rock is inconsistent with the origin of the mantle, but representative of the lunar lower crust. Alternatively, the rock crystallized from the impact-derived melt pool formed by the SPA-impact event via mixing the lunar crust and mantle materials. This scenario is consistent with fast-cooling thermal conditions of a shallow melt pool, indicated by the fine to medium-sized texture (<3 mm) of the rock and the SPA-impact melting model [Icarus 2012; 220: 730–43].  相似文献   

15.
The Chinese lunar probe Chang''e-4 (CE-4) landed in the Von Kármán crater within the South Pole–Aitken (SPA) basin on the far-side of the Moon on 3 January 2019. Following this, the moon rover Yutu-2 separated from the CE-4 lander and started its travels and exploration on the far-side of the Moon. Before this landing, humans had remotely observed the far-side of the Moon with lunar satellites. However, it was the first time that a man-made spacecraft had landed there and actually left behind wheel prints belonging to humanity.Since China''s Lunar Exploration Project (CLEP), or Chang''e Project, started in 2004, China has accomplished the first two steps of its three-step plan of ‘Orbiting, Landing and Returning’. CE-3 and CE-4 landed successfully on the near-side and far-side of the Moon, respectively. In the near future, CE-5 will land again on the near-side of the Moon and take lunar rock and soil samples back to Earth, thus completing the three-step plan of CLEP. In April 2019, National Science Review (NSR) interviewed three key figures of CLEP: CLEP Chief Engineer Weiren Wu (), the first CLEP Chief Scientist and CLEP senior consultant Ziyuan Ouyang (), and CLEP third phase Vice-Chief Engineer, CE-4 Ground Research and Application System Director Chunlai Li (). They talked about the scientific expectations and future plans of China''s lunar and deep space exploration.  相似文献   

16.
There has been a large literature in the last two decades affirming adaptive DNA sequence evolution between species. The main lines of evidence are from (i) the McDonald-Kreitman (MK) test, which compares divergence and polymorphism data, and (ii) the phylogenetic analysis by maximum likelihood (PAML) test, which analyzes multispecies divergence data. Here, we apply these two tests concurrently to genomic data of Drosophila and Arabidopsis. To our surprise, the >100 genes identified by the two tests do not overlap beyond random expectation. Because the non-concordance could be due to low powers leading to high false negatives, we merge every 20–30 genes into a ‘supergene’. At the supergene level, the power of detection is large but the calls still do not overlap. We rule out methodological reasons for the non-concordance. In particular, extensive simulations fail to find scenarios whereby positive selection can only be detected by either MK or PAML, but not both. Since molecular evolution is governed by positive and negative selection concurrently, a fundamental assumption for estimating one of these (say, positive selection) is that the other is constant. However, in a broad survey of primates, birds, Drosophila and Arabidopsis, we found that negative selection rarely stays constant for long in evolution. As a consequence, the variation in negative selection is often misconstrued as a signal of positive selection. In conclusion, MK, PAML and any method that examines genomic sequence evolution has to explicitly address the variation in negative selection before estimating positive selection. In a companion study, we propose a possible path forward in two stages—first, by mapping out the changes in negative selection and then using this map to estimate positive selection. For now, the large literature on positive selection between species has to await reassessment.  相似文献   

17.
Central precocious puberty (CPP) refers to a human syndrome of early puberty initiation with characteristic increase in hypothalamic production and release of gonadotropin-releasing hormone (GnRH). Previously, loss-of-function mutations in human MKRN3, encoding a putative E3 ubiquitin ligase, were found to contribute to about 30% of cases of familial CPP. MKRN3 was thereby suggested to serve as a ‘brake’ of mammalian puberty onset, but the underlying mechanisms remain as yet unknown. Here, we report that genetic ablation of Mkrn3 did accelerate mouse puberty onset with increased production of hypothalamic GnRH1. MKRN3 interacts with and ubiquitinates MBD3, which epigenetically silences GNRH1 through disrupting the MBD3 binding to the GNRH1 promoter and recruitment of DNA demethylase TET2. Our findings have thus delineated a molecular mechanism through which the MKRN3–MBD3 axis controls the epigenetic switch in the onset of mammalian puberty.  相似文献   

18.
Increase in urine albumin excretion rate (AER) precede a fall in glomerular filtration rate in patients developing diabetic chronic kidney disease (CKD). Our results have shown that 7 (50 %) of diabetic and hypertensive individuals with decreased GFR do not have increased AER. In this cross-sectional study, we measured AER of 75 patients with type 2 diabetes and hypertension by immunoturbidimetric method. We correlated the results with eGFR values obtained by Cockcroft–Gault and MDRD method. The method used was not a compensated method. We measured serum creatinine by modified Jaffe’s kinetic method in autoanalyzer XL-600. Analysis of data showed positive correlation between eGFR and microalbuminuria by both the methods with eGFR <60 mL/min/1.73 m2. Pearson’s correlation co-efficient (r) was 0.9 (p = 0.0001) by Cockcroft–Gault formula and 0.69 (p = 0.0063) by MDRD formula. Our results concluded that there was positive correlation between AER and eGFR <60 mL/min/1.73 m2. We have recognized that these two parameters provide a complimentary benefit in management of cases with CKD.  相似文献   

19.
Graphene is the building block of graphite, made of carbon atoms bonded into sheets of hexagonal rings just a single atom thick. Although such isolated sheets had been predicted for many decades to exist, and had been grown on other surfaces, interest in this material exploded after the discovery in 2004 that single sheets could be made easily and cheaply by separating them mechanically from graphite flakes (a process called exfoliation). Although graphene is often advertised as a ‘wonder material’—electronically conducting, transparent and extremely strong and flexible—much of the interest in it is more fundamental. As a 2D conductor, graphene shows unusual electronic and magnetic properties that enable the study of quantum-mechanical effects of confinement and of correlations between electron motions—some of which might find applications in electronic devices. The excitement of this discovery was reflected in the award of the 2010 Nobel Prize in Physics to two pioneers in the field: Andre Geim and Konstantin Novoselov of the University of Manchester in the UK.This rich behavior is broadened still further when two graphene sheets are brought close enough to interact with one another. In particular, the electronic properties may then depend on the relative orientation of the sheets: how aligned the two ‘honeycomb’ lattices are. Two grids superimposed on one another may create ‘superlattices’: regularities at larger scales than the grid spacing, due to registry (commensurability) between the two at certain angles. This so-called moiré effect is sometimes evident for two closely spaced grid-like fences seen from afar. Experimentally exploring the electronic properties of such ‘twisted bilayer graphene’ requires an ability to precisely control the position and orientation of the two sheets. These phenomena are now recognized as generic to other 2D materials, such as hexagonal sheets of boron nitride. They have revealed a fertile playground for condensed-matter physics. In particular, striking electronic properties appear at certain ‘magic-angle’ twists of the layers.NSR spoke to two of the leading experts in the study of magic-angle twisted bilayer graphene (MATBG): experimentalist Pablo Jarillo-Herrero of the Massachusetts Institute of Technology and theorist Allan MacDonald of the University of Texas at Austin.  相似文献   

20.
Applying metal organic frameworks (MOFs) in electrochemical systems is a currently emerging field owing to the rich metal nodes and highly specific surface area of MOFs. However, the problems for MOFs that need to be solved urgently are poor electrical conductivity and low ion transport. Here we present a facile in situ growth method for the rational synthesis of MOFs@hollow mesoporous carbon spheres (HMCS) yolk–shell-structured hybrid material for the first time. The size of the encapsulated Zeolitic Imidazolate Framework-67 (ZIF-67) is well controlled to 100 nm due to the spatial confinement effect of HMCS, and the electrical conductivity of ZIF-67 is also increased significantly. The ZIF@HMCS-25% hybrid material obtained exhibits a highly efficient oxygen reduction reaction activity with 0.823 V (vs. reversible hydrogen electrode) half-wave potential and an even higher kinetic current density (JK = 13.8 mA cm−2) than commercial Pt/C. ZIF@HMCS-25% also displays excellent oxygen evolution reaction performance and the overpotential of ZIF@HMCS-25% at 10 mA cm−2 is 407 mV. In addition, ZIF@HMCS-25% is further employed as an air electrode for a rechargeable Zn–air battery, exhibiting a high power density (120.2 mW cm−2 at 171.4 mA cm−2) and long-term charge/discharge stability (80 h at 5 mA cm−2). This MOFs@HMCS yolk–shell design provides a versatile method for the application of MOFs as electrocatalysts directly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号