首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
等差与等比数列是最基本而重要的数列。我们稍加推广,便可得到两种既包含等差数列又包含等比数列的数列。一、等比差数列通项为a_n=qa_(n-1)+d(其中q和d为常数)的数列(当d=0时为等比数列,当q=1时为等差数列),我们称它为等比差数列。  相似文献   

2.
由递推关系a_(n 1)=pa_n q(p,q为常数,而且p≠0,p≠1)给出的数列,为方便起见不妨称其为等比差数列。经过简单的变形,这类数列就化为以p为公比的等比数’列,其递推关系为:a_(n 1) q/p-1=p(a_n q/p-1),这样要解决等比差数列的问题就归结为简单的等比数列的问题.在实际中,许多由递推关系式给出的数列表面上看去似乎很复杂,但经过适当的变形与化简,就可化为等比差数列。  相似文献   

3.
高中代数下册第132页有这样一道习题:“已知数列{a_n}的项满足,其中c≠0,c≠1,证明这个数列的通项公式是:a_n=[bc~n (d-b)c~(n-1)-d]/(c-1)。” 以这道题为引子,可作如下思考。 思考之一:如果将此题的证明改为求这个数列的通项公式,该如何求呢?很显然这是属于已知数列的递推关系式求其通项公式的问题。而这类问题本身对高中学生来说就是一个难点,但对培养学生能力来说的确是一类较好的题型。此题当c=1时就是等差数列;当c≠0,d=0时就是等比数列;当c≠0,c≠1就可以看成由等差或等比数列生成的新数列,不妨称它为等比差数列。下面就当c≠0,c≠1时介绍几种中学生可以接受的方法。  相似文献   

4.
设数列{an}满足一阶递推关系:an+1=pan+q.当P≠1且P≠0,q≠0时,数列{an)非等差、等比数列.其通项公式有两种求解思路. 思路1-转化为等比数列求其通项公式在an+1=pan+q中,两边同减去q/1-p得an+1-q/1-p=p(an-q/1-p).  相似文献   

5.
<正>我们知道,当q≠1时,等比数列{a_n}的前n项和S_n=■两边同除以1-q~n,得■(常数).当q=-1,且n为偶数时,有1-q~n=0,上式左边无意义.于是,我们得到等比数列{a_n}前n项和公式的如下一个变式.结论设等比数列{a_n}的前n项和为S_n,公比为q(q≠±1),则■为常值数列,且值为■由上述结论很容易得到如下的推论.  相似文献   

6.
由等差数列的定义an 1-an=d(d为常数)及等比数列的定义(an 1)/(an)=q(q为常数,q≠0)可知,等差数列与等比数列是递推数列的特殊情形,对于其他的递推形式,可考虑根据题目的特点,将递推数列转化成等差数列或等比数列来解。本文对一些简单的递推数列给出求通项公式的几种方法供参考。  相似文献   

7.
在求数列极限中,求limSn的问题可分为两类: (1) 所给数列是无穷等比递缩数列(公比q≠0,且|q|<1),求limSn,直接用公式(2)所给数列不是无穷等比递缩数列,可用拆项、约分等求和(积)技巧,将Sn变为可求极限的式子.请看: 例1 已知等比数列{an},a1 a3=10,  相似文献   

8.
众所周知 ,公比 q≠ 1的等比数列的有些性质对于公比 q=1的等比数列不适合 ,前 n项和公式就是例证。同样 ,公比 q≠ - 1的等比数列的有些性质对于公比 q=- 1的等比数列也不适用 ,因此在解决等比数列问题时 ,不可忽视 q=1及 q=- 1的等比数列。先看下面的命题 :若 {an}是等比数列 ,Sn 是其前 n项和 ,则Sk,S2 k- Sk,S3 k- S2 k,… ,Sn k- S(n- 1) k,…是等比数列。很多书刊都视它为真命题 ,其实这个命题是一个假命题 ,现举反例如下 :若 {an}是公比为 - 1的等比数列 ,且 k为偶数时 ,Sk= S2 k- Sk=S3 k- S2 k=… =Snk- S(n- 1) k=… =0 ,∴…  相似文献   

9.
众所周知,公比q≠1的等比数列的有些性质对于公比q=1的等比数列不适用,前n项和公式就是例证.同样,公比q≠-1的等比数列的有些性质对于公比q=-1的等比数列也不适用.因此在解决等比数列问题时,不可忽视q=1及q=-1的等比数列. 先看下面的命题: 若{a_n}是等比数列,S_n是其前n项和,则  相似文献   

10.
一、慎选公式 等比数列的前n项和公式实际上是由两部分构成的,与q的取值有关,即Sn={na1(q=1) &;lt;{a1(a-q^n)}/1-q&;gt;(q≠1)。解题时易忽略q=1的情形.  相似文献   

11.
一对等比数列前n项和的公式另一种证明的异议贵刊1985年第3期《等比数列求和公式的另一种证明》一文中,给出了等比数列前n项和的公式(以下称公式)的又一证法。转述如下: “对于等比数列由它的定义有 a_2/a_1=a_3/a_2=…=a_n/a_(n-1)=q (a_2+a_3+…+a_n)/(a_1+a_2+…+a_(n-1))=q (S_-a_1)/(S_n-a_n)=q (S_n-a_1)/(S_n-a_1q~(n-1))=q 整理得 S=a_1(1-q~n)/(1-q) (q≠1)”  相似文献   

12.
1 问题提出众所皆知,学生在学习等比数列的求和公式和应用求和公式解决问题时往往忽略q=1的情况而直接运用q≠1的求和公式,因此笔者在采用苏教版高中《数学5》进行数列一章中等比数列前n项和公式教学时,面对学生的实际情况(四星级高中实验班)采用了几种方法,从不同角度推导等比数列前n项和S_n  相似文献   

13.
我们已经知道等比数列前n项和Sn(q≠1)公式为Sn=(a1(1-q^n))/1-q.在这个公式中若令a1/1-q=-A即可得Sn=Aq^n-A(A≠0,q≠1).由此可得一个非常数的等比数列其前n项和具有Sn=Aq^n-A这样的特征.这个公式形式简洁,其应用较广.下面是这个公式的一些简单应用.  相似文献   

14.
众所周知,等差数列{a_n}的通项公式为a_n=a_1 (n-1)d (其中a_1为首项,d为公差)等比数列的通项公式为a_n=a_1q~(n-1)(其中a_1为首项,q为公比)笔者在多年的教学中,认为这两个公式可推广,且推广后的公式更实用。下面是推广后的公式:Ⅰ、已知等差数列{a_n}的第K项为a_k(k=1,2,3……)公差为d,则{a_n}的通项公式为:  相似文献   

15.
现行高中数学课本的等差数列、等比数列的通项公式 a_n=a_1+(n-1)d ① a_n=a_1q~(n-1) ②如果把①改写成 a_n=a_(n-1)+d(首项a_1=a)③把②改写成 a_n=a_(n-1)q(首项a_1=a) ④则③和④就是递推数列。一个数列{a_n},如果对于每一个自然数n,有一种规则将a_(n+1)同a_n联系起来,就  相似文献   

16.
我们知道,当n是正整数时有即x~n-y~n能被x-y整除; 当n是正奇数时有 即x~n y~n能被x y整除. 我们感兴趣的是二项公式具有可整除性的特点,它能巧妙应用于证明等比数列前n项和的公式,数列递推通项公式,解某一类特殊方程,多项式因式分解,证某一类不等式等。 例1 证明等比数列前n项之和的公式 应用二项公式可以给出一种简捷的证法。 证明:设等比数列为 则 上式两边乘以(1-q), 得(1-q)S_n=a_1(1-q~n), ∴S_n=a_1(1-q~n)/1-q (q≠1).  相似文献   

17.
对于等比数列前n项求和公式,许多同学只记住了Sn=a1(1-qn)/1-q,而忽视公比q的限制条件.事实上,对于等比数列前n项求和公式,有.因此,在解涉及等比数列前n项求和公式的题目时要注意对公比q进行分类讨论.现举例说明,供同学们参考.  相似文献   

18.
在解与等比数列前 n项和有关习题时 ,教师经常向学生强调要注意对公比 q=1和q≠ 1两种情况讨论 ,但一般很少注意 q=- 1的情况 .而这时往往最容易出错 ,这种错误更隐蔽 ,不易察觉 .下面举例加以说明 ,从而引起大家的注意 ,使得解题更加严谨 .例 已知数列 {an}是等比数列 ,前 n项和为 Sn,前 2 n项和为 S2 n,前 3n项和为 S3n.求证 :Sn,S2 n- Sn,S3n- S2 n成等比数列 .此题为本刊文 [1 ]例 5.文 [1 ]将等比数列前 n项和公式 Sn=a1 ( 1 - qn)1 - q ( q≠ 1 )中a1 1 - q设为 - A,得 Sn=Aqn- A( A≠ 0 ,q≠ 1 ) ,利用这一结构形式进行证明 ,…  相似文献   

19.
<正>数列的通项公式是研究数列性质的前提,求数列的通项公式是数列的基本问题之一,求数列的综合题是高考的热点问题.求数列通项公式的方法灵活多变、形式灵活多样,这些解题技巧最终都可以归结为几种基本方法.只要掌握了这些方法,便可以以不变应万变.为帮助同学们系统复习,下面以2014年高考真题为例对数列通项公式的常用求法进行归纳总结.一、基本量法求等差(比)数列通项公式是最基本的方法基本量法即先判断数列是等差(或等比)数列,根据题目条件求出a_1,d(或q),再由等差数(或等比)数列的通项公式写出其通项公式.  相似文献   

20.
通过对等差、等比数列的学习,我们发现许多与项数有关的试题都要运用通项公式,并列出关于首项a1和公差d(公比q)的方程组,解出a1和d(q)后才能求解,这样运算比较烦琐。经过对教学过程中部分试题的分析、研究,我们发现这部分试题可以不解方程组,直接利用等差(等比)数列项与项之间的关系(通项公式的变形)便可求解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号