首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundLignocellulose is considered a renewable organic material, but the industrial production of biofuel from lignocellulose is challenging because of the lack of highly active hydrolytic enzymes. The guts of herbivores contain many symbiotic microorganisms that have evolved to hydrolyze plant lignocellulose. Chinese bamboo rats mainly consume high-fiber foods, indicating that some members of the intestinal tract microbiota digest lignocellulose, providing these rats with the energy required for growth.ResultsHere, we used metagenomics to analyze the diversity and functions of the gut microbiota in Chinese bamboo rats. We identified abundant populations of lignocellulose-degrading bacteria, whose main functions involved carbohydrate, amino acid, and nucleic acid metabolism. We also found 587 carbohydrate-active enzyme genes belonging to different families, including 7 carbohydrate esterase families and 21 glycoside hydrolase families. The glycoside hydrolase 3, glycoside hydrolase 1, glycoside hydrolase 43, carbohydrate esterase 4, carbohydrate esterase 1, and carbohydrate esterase 3 families demonstrated outstanding performance.ConclusionsThe microbes and enzymes identified in our study expand the existing arsenal of proficient degraders and enzymes for lignocellulosic biofuel production. This study also describes a powerful approach for targeting gut microbes and enzymes in numerous industries.How to cite: Bai D, Lin X, Hu Y, et al. Metagenomics approach to identify lignocellulose-degrading enzymes in the gut microbiota of the Chinese bamboo rat cecum. Electron J Biotechnol 2021;50. https://doi.org/10.1016/j.ejbt.2020.12.001  相似文献   

2.
BackgroundRemoval of dyes from wastewater by microorganisms through adsorption, degradation, or accumulation has been investigated. Biological methods used for dye treatment are generally always effective and environmentally friendly. In this study, biosorption of the Fast Black K salt azo dye by the bacterium Rhodopseudomonas palustris 51ATA was studied spectrophotometrically, at various pH (2–10), temperatures (25°C, 35°C, and 45°C) and dye concentrations (25–400 mg L-1).ResultsThe bacterial strain showed extremely good dye-removing potential at various dye concentrations. IR studies at different temperatures showed that the dye was adsorbed on the bacterial surface at lower temperatures. Characteristics of the adsorption process were investigated by Scatchard analysis at 25°C and 35°C. Scatchard analysis of the equilibrium binding data for the dye on this bacterium gave rise to linear plots, indicating that the Langmuir model could be applied. The regression coefficients obtained for the dye from the Freundlich and Langmuir models were significant and divergence from the Scatchard plot was observed.ConclusionThe adsorption behavior of the dye on this bacterium was expressed by the Langmuir, Freundlich, and Temkin isotherms. The adsorption data with respect to various temperatures provided an excellent fit to the Freundlich isotherm. However, when the Langmuir and Temkin isotherm models were applied to these data, a good fit was only obtained for the dye at lower temperatures, thus indicating that the biosorption ability of R. palustris 51ATA is dependent on temperature, pH, and dye concentration.How to cite: Öztürk A, Bayol E, Abdullah MI. Characterization of the biosorption of fast black azo dye K salt by the bacterium Rhodopseudomonas palustris 51ATA strain. Electron J Biotechnol 2020;46. https://doi.org/10.1016/j.ejbt.2020.05.002.  相似文献   

3.
BackgroundPlastic waste is a serious problem because it is difficult to degrade, thereby leading to global environment problems. Poly(lactic acid) (PLA) is a biodegradable aliphatic polyester derived from renewable resources, and it can be degraded by various enzymes produced by microorganisms. This study focused on the scale-up and evaluated the bioprocess of PLA degradation by a crude microbial enzyme produced by Actinomadura keratinilytica strain T16-1 in a 5 L stirred tank bioreactor.ResultsPLA degradation after 72 h in a 5 L bioreactor by using the enzyme of the strain T16-1 under controlled pH conditions resulted in lactic acid titers (mg/L) of 16,651 mg/L and a conversion efficiency of 89% at a controlled pH of 8.0. However, the PLA degradation process inadvertently produced lactic acid as a potential inhibitor, as shown in our experiments at various concentrations of lactic acid. Therefore, the dialysis method was performed to reduce the concentration of lactic acid. The experiment with a dialysis bag achieved PLA degradation by weight loss of 99.93%, whereas the one without dialysis achieved a degradation of less than approximately 14.75%. Therefore, the dialysis method was applied to degrade a commercial PLA material (tray) with a conversion efficiency of 32%, which was 6-fold more than that without dialysis.ConclusionsThis is the first report demonstrating the scale-up of PLA degradation in a 5 L bioreactor and evaluating a potential method for enhancing PLA degradation efficiency.How to cite: Panyachanakul T, Sorachart B, Lumyong S, et al. Development of biodegradation process for Poly(DL-lactic acid) degradation by crude enzyme produced by Actinomadura keratinilytica strain T16-1. Electron J Biotechnol 2019;40. https://doi.org/10.1016/j.ejbt.2019.04.005  相似文献   

4.
BackgroundFor more than a decade, water-soluble, eco-friendly, biocompatible, and low-toxicity fluorescent nanomaterials have received considerable attention for their numerous in vivo and in vitro applications in biomedical imaging, disease diagnostics, and environmental monitoring. Owing to their tunable photoluminescence properties, carbon-based luminescent nanomaterials have shown great potential in bioimaging, photocatalysis, and biosensing among other applications.ResultsMarine environments provide excellent resources for the fabrication of these nanomaterials, because many marine organisms contain interesting trigger organic compounds that can be used as precursors. Herein, we synthesize multi-color emissive carbon dots (CDs) with an intrinsic photoluminescence quantum yield of 20.46%. These nanostructures were achieved through the one-step hydrothermal treatment of marine polysaccharide chondroitin sulfate, obtained from shark cartilage, in aqueous solution.ConclusionsWe successfully demonstrate the low toxicity of our marine resource-derived CDs in zebrafish, and provide an initial assessment of their possible use as a bioimaging agent. Notably, the newly synthesized CDs localize in the intestines of zebrafish larvae, thereby indicating their biocompatibility and potential use as in vivo dyes.How to cite: Kim KW, Choi TY, Kwon YM, et al. Simple synthesis of photoluminescent carbon dots from a marine polysaccharide found in shark cartilage. Electron J Biotechnol 2020;47. https://doi.org/10.1016/j.ejbt.2020.07.003.  相似文献   

5.
BackgroundRosemary (Rosmarinus officinalis) contains active substances that have desirable properties for industrial and herbal medicine applications, e.g., essential oils (1.5–2.5%), tannins, flavonoids, triterpenes, saponins, resins, phytosterols, rosmarinic acid and many others. The aim of this study was to determine the influence of rosemary extract and 20% rapeseed oil substitution for animal fat on storage changes and inhibition of cholinesterases in liver pâté.ResultsPreliminary research showed that rosemary extract exhibited antioxidative activity in the system of accelerated Rancimat and Oxidograph tests. Then, rosemary extract was used as an ingredient in liver pâté. During the experiment, meat samples were refrigerated and tested on days 1, 5, 8, 12 and 15 after production. The study proved that the substitution of 20% of animal fat with rapeseed oil decreased the content of saturated acids and increased the content of monoenic fatty acids by approximately 5% and polyene fatty acids by 40%.ConclusionsIn addition to antioxidative activity, the rosemary extract affected the health-promoting value of the samples, which inhibited cholinesterase activity during the entire storage period. The extract inhibited AChE more than BChE.How to cite: Bilska A, Kobus-Cisowska J, Kmiecik D, et al. Cholinesterase inhibitory activity, antioxidative potential and microbial stability of innovative liver pâté fortified with rosemary extract (Rosmarinus officinalis). Electron J Biotechnol 2019;40. https://doi.org/10.1016/j.ejbt.2019.03.007  相似文献   

6.
BackgroundMathematical modeling is useful in the analysis, prediction, and optimization of an enzymatic process. Unlike the conventional modeling methods, Monte Carlo method has special advantages in providing representations of the molecule’s spatial distribution. However, thus far, Monte Carlo modeling of enzymatic system is namely based on unimolecular basis, not suitable for practical applications. In this research, Monte Carlo modeling is performed for enzymatic hydrolysis of lactose for the purpose of real-time applications.ResultsThe enzyme hydrolysis of lactose, which is conformed to Michaelis–Menten kinetics, is modeled using the Monte Carlo modeling method, and the simulation results prove that the model predicts the reaction kinetics very well.ConclusionsMonte Carlo modeling method can be used to model enzymatic reactions in a simple way for real-time applications.How to cite: Gao L, Guo Q, Lin H, et al. Modeling of lactose enzymatic hydrolysis using Monte Carlo method. Electron J Biotechnol 2019;41.https://doi.org/10.1016/j.ejbt.2019.04.010  相似文献   

7.
8.
BackgroundRice sheath blight (caused by Rhizoctonia solani) and tobacco mosaic virus are very important plant diseases, causing a huge loss in global crop production. Paenibacillus kribbensis PS04 is a broad-spectrum biocontrol agent, used for controlling these diseases. Previously, extracellular polysaccharides (EPS) from P. kribbensis PS04 had been purified and their structure was inferred to be fructosan. This study aimed to evaluate the effects of exogenous EPS treatment on plant–pathogen interactions.ResultsPlant defense genes such as phenylalanine ammonia-lyase, catalase, chitinase, allene oxide synthase, and PR1a proteins were significantly induced by exogenous EPS treatment. Moreover, subsequent challenge of EPS-pretreated plants with the pathogens (R. solani or tobacco mosaic virus) resulted in higher expression of defense-associated genes. Increased activities of defense-associated enzymes, total phenols, and flavonoids were also observed in EPS pretreated plants. The contents of malondialdehyde in plants, which act as indicator of lipid peroxidation, were reduced by EPS treatment.ConclusionsThis study comprehensively showed that EPS produced from P. kribbensis PS04 enhances disease resistance in plants by the activation of defense-associated genes as well as through the enhancement of activities of defense-related enzymes.How to citeCanwei S, Xiaoyun H, Ahmed N, et al. Fructosan form Paenibacillus kribbensis PS04 enhance disease resistance against Rhizoctonia solani and tobacco mosaic virus. Electron J Biotechnol 2020;47. https://doi.org/10.1016/j.ejbt.2020.07.002  相似文献   

9.
BackgroundChia seeds are gaining increasing interest among food producers and consumers because of their prohealth properties.ResultsThe aim of this work was to evaluate the potential of chia seeds to act as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. The highest inhibitory activity against AChE and BChE was observed for colored seed ethanol extracts. A positive correlation was found between the presence of quercetin and isoquercetin as well as protocatechuic, hydroxybenzoic, and coumaric acids and the activity of extracts as AChE and BChE inhibitors. It has also been shown that grain fragmentation affects the increase in the activity of seeds against cholinesterases (ChE). Furthermore, seeds have been shown to be a source of substances that inhibit microbial growth.ConclusionsIt was found that the chia seed extracts are rich in polyphenols and inhibit the activity of ChEs; therefore, their use can be considered in further research in the field of treatment and prevention of neurodegenerative diseases.How to cite: Kobus-Cisowska J, Szymanowska D, Maciejewska P, et al. In vitro screening for acetylcholinesterase and butyrylcholinoesterase inhibition and antimicrobial activity of chia seeds (Salvia hispanica). Electron J Biotechnol 2019;37. https://doi.org/10.1016/j.ejbt.2018.10.002  相似文献   

10.
11.
BackgroundLaccases are copper-containing enzymes which have been used as green biocatalysts for many industrial processes. Although bacterial laccases have high stabilities which facilitate their application under harsh conditions, their activities and production yields are usually very low. In this work, we attempt to use a combinatorial strategy, including site-directed mutagenesis, codon and cultivation optimization, for improving the productivity of a thermo-alkali stable bacterial laccase in Pichia pastoris.ResultsA D500G mutant of Bacillus licheniformis LS04 laccase, which was constructed by site-directed mutagenesis, demonstrated 2.1-fold higher activity when expressed in P. pastoris. The D500G variant retained similar catalytic characteristics to the wild-type laccase, and could efficiently decolorize synthetic dyes at alkaline conditions. Various cultivation factors such as medium components, pH and temperature were investigated for their effects on laccase expression. After cultivation optimization, a laccase activity of 347 ± 7 U/L was finally achieved for D500G after 3 d of induction, which was about 9.3 times higher than that of wild-type enzyme. The protein yield under the optimized conditions was about 59 mg/L for D500G.ConclusionsThe productivity of the thermo-alkali stable laccase from B. licheniformis expressed in P. pastoris was significantly improved through the combination of site-directed mutagenesis and optimization of the cultivation process. The mutant enzyme retains good stability under high temperature and alkaline conditions, and is a good candidate for industrial application in dye decolorization.  相似文献   

12.
BackgroundThe main objective of this study was to isolate fungi associated with Anthopleura xanthogrammica and measure their antimicrobial and enzymatic activities. A total of 93 fungal strains associated with A. xanthogrammica were isolated in this study, of which 32 isolates were identified using both morphological characteristics and internal transcribed spacer (ITS) sequence analysis. The antibacterial activities of 32 fungal isolates were tested against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Edwardsiella tarda, Vibrio harveyi, Fusarium oxysporum, and Pyricularia oryzae by agar diffusion assay. Extracellular hydrolytic enzyme activities of the fungal isolates were determined by agar diffusion assays. Enzyme activities were detected from clear halo size.ResultsThe isolated fungi belonged to 18 genera within 7 taxonomic orders of 1 phylum. The genera Aspergillaceae were the most diverse and common. The antimicrobial activities of 32 isolates were evaluated, and 19 (59.4%) of fungi isolate displayed unique antimicrobial activities. All fungal strains displayed at least one enzyme activity. The most common enzyme activities in the fungi isolates were amylase and protease, while the least common were pectinase and xylanase.ConclusionsThis is first report on the sea anemone-derived fungi with antimicrobial and enzyme activities. Results indicated that sea anemone is a hot spot of fungal diversity and a rich resource of bioactive natural products.How to cite: Liu S, Ahmed S, Zhang C, et al. Diversity and antimicrobial activity of culturable fungi associated with sea anemone Anthopleura xanthogrammica. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.003  相似文献   

13.
14.
BackgroundLiquid wax esters are widely used in cosmetic as well as pharmaceutical and other industries. The demand of organic and natural products is increasing nowadays. Coconut oil contains benefit fatty acids and has been mainly used for oil-based and moisturizer products. Liquid wax esters from coconut oil and unsaturated fatty alcohol can be synthesized by enzymatic reaction; and it is interesting for using as an alternative natural ingredient in these industries.ResultsOptimal condition for coconut oil based wax ester synthesis by immobilized lipase EQ3 was 10 U of enzyme, temperature at 30°C and molar ratio of coconut oil to oleyl alcohol at 1:3 (mol/mol) (0.33X) dissolved in isooctane for 12 h, while for Lipozyme RM IM optimal condition was 10 U of enzyme, temperature at 45°C and oil/alcohol molar ratio at 1:3 (0.33X) dissolved in isooctane for 3 h. Percentage of wax esters synthesized by both lipases reached more than 88%. Both immobilized lipases catalyzed high yield of wax esters within the 2nd batch; after that, the immobilized lipases showed reduced activity and synthesized < 60% of wax esters from the 3rd to 5th batch. The main composition of wax esters was ~ 48% oleyl laurate with 10% degradation at ~ 250°C.ConclusionsThe liquid wax ester synthesis by commercial Lipozyme RM IM had higher effect than immobilized lipase EQ3, but both catalysts were stable within 2 batches in the optimum condition. The characteristic properties of wax esters showed potential for use as components in cosmetics and skin care products.How to citeUngcharoenwiwat P, H-Kittikun A. Enzymatic synthesis of coconut oil based wax esters by immobilized lipase EQ3 and commercial lipozyme RMIM. Electron J Biotechnol 2020;47. https://doi.org/10.1016/j.ejbt.2020.06.005  相似文献   

15.
BackgroundMilk whey, a byproduct of the dairy industry has a negative environmental impact, can be used as a raw material for added-value compounds such as galactooligosaccharides (GOS) synthesis by β-galactosidases.ResultsB-gal42 from Pantoea anthophila strain isolated from tejuino belonging to the glycosyl hydrolase family GH42, was overexpressed in Escherichia coli and used for GOS synthesis from lactose or milk whey. Crude cell-free enzyme extracts exhibited high stability; they were employed for GOS synthesis reactions. In reactions with 400 g/L lactose, the maximum GOS yield was 40% (w/w) measured by HPAEC-PAD, corresponding to 86% of conversion. This enzyme had a strong predilection to form GOS with β(1 → 6) and β(1 → 3) galactosyl linkages. Comparing GOS synthesis between milk whey and pure lactose, both of them at 300 g/L, these two substrates gave rise to a yield of 38% (60% of lactose conversion) with the same product profile determined by HPAEC-PAD.ConclusionsB-gal42 can be used on whey (a cheap lactose source) to produce added value products such as galactooligosaccharides.How to cite: Yañez-Ñeco CV, Cervantes FV, Amaya-Delgado L, et al. Synthesis of β(1→3) and β(1→6) galactooligosaccharides from lactose and whey using a recombinant β-galactosidase from Pantoea anthophila. Electron J Biotechnol 2021;49. https://dx.doi.org/10.1016/j.ejbt.2020.10.004  相似文献   

16.
BackgroundSalep is obtained by grinding dried orchid tubers and used as a valuable ingredient in the food industry. Because of the glucomannan content of salep, it is thought to have prebiotic potential. However, there is little information in studies concerning the fermentation characteristics and potential prebiotic properties of salep. The objective of this study was to investigate the effect of salep on bifidobacterial growth by measuring the highest optical density (OD), calculating the specific growth rates, and determining the production of lactic acid and short-chain fatty acids (acetic, propionic, and butyric acid) as a result of bacterial fermentation.ResultThe OD and pH values obtained in this study showed that salep was utilized as a source of assimilable carbon and energy by the Bifidobacterium species (BS). All Bifidobacterium strains produced lactic, acetic, propionic, and butyric acid, indicating that salep is readily fermented by these bacteria. Salep at 1% (w/v) showed a similar effect on bifidobacterial growth as that promoted by 1% (w/v) glucose used as a traditional carbon source.ConclusionsBifidobacterium species can develop in media containing salep as well as in glucose and exhibit the potential to be used as new sources of prebiotics.How to cite: Usta-Gorgun B, Yilmaz-Ersan L. Short-chain fatty acid production by the Bifidobacterium species in the presence of salep. Electron J Biotechnol 2020;47. https://doi.org/10.1016/j.ejbt.2020.06.004.  相似文献   

17.
18.
BackgroundMethanol can be effectively removed from air by biofiltration. However, formaldehyde is one of the first metabolic intermediates in the consumption of methanol in methylotrophic microorganisms, and it can be released out of the cell constituting a secondary emission.ResultsThe total removal of methanol was achieved up to input loads of 263 g m−3 h−1 and the maximum elimination capacity of the system was obtained at an empty bed residence times of 90 s and reached 330 g m−3 h−1 at an input methanol load of 414 g m−3 h−1 and 80% of removal efficiency. Formaldehyde was detected inside the biofilter when the input methanol load was above 212 g m−3 h−1. Biomass in the filter bed was able to degrade the formaldehyde generated, but with the increase of the methanol input load, the unconsumed formaldehyde was released outside the biofilter. The maximum concentration registered at the output of the system was 3.98 g m−3 when the methanol load was 672 g m−3 h−1 in an empty bed residence times of 60 s.ConclusionsFormaldehyde is produced inside a biofilter when methanol is treated in a biofiltration system inoculated with Pichia pastoris. Biomass present in the reactor is capable of degrading the formaldehyde generated as the concentration of methanol decreases. However, high methanol loads can lead to the generation and release of formaldehyde into the environment.How to cite: Guerrero K, Arancibia A, Cáceres M, et al. Release of formaldehyde during the biofiltration of methanol vapors in a peat biofilter inoculated with Pichia pastoris GS115. Electron J Biotechnol 2019;40. https://doi.org/10.1016/j.ejbt.2019.04.003.  相似文献   

19.
20.
BackgroundThis paper presents micro- and nano-fabrication techniques for leachable realgar using the extremophilic bacterium Acidithiobacillus ferrooxidans (A. ferrooxidans) DLC-5.ResultsRealgar nanoparticles of size ranging from 120 nm to 200 nm were successfully prepared using the high-energy ball mill instrument. A. ferrooxidans DLC-5 was then used to bioleach the particles. The arsenic concentration in the bioleaching system was found to be increased significantly when compared with that in the sterile control. Furthermore, in the comparison with the bioleaching of raw realgar, nanoparticles could achieve the same effect with only one fifth of the consumption.ConclusionEmphasis was placed on improving the dissolvability of arsenic because of the great potential of leachable realgar drug delivery in both laboratory and industrial settings.How to cite: Xu R, Song P, Wang J, et al. Bioleaching of realgar nanoparticles using the extremophilic bacterium Acidithiobacillus ferrooxidans DLC. Electron J Biotechnol 2019;38. https://doi.org/10.1016/j.ejbt.2019.01.001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号