首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
已知Q(x0,y0)是椭圆(x2)/(a2) (y2)/(b2)=1(a>b>0)上一点,求作过Q点的切线,文[1]给出了一种尺规作法,若Q在非顶点处,文[1]作法的实质是:取点P(x0,(ay0)/(b)),作PN⊥OP(O为坐标系原点),交x轴于N,则直线NQ为所求的切线.  相似文献   

2.
我们知道 ,圆是椭圆的一种特殊情形。利用直尺和圆规可以作出圆上任一点的切线。这一方法能否推广到椭圆上呢 ?即能否作出椭圆上任一点的切线 ?本文利用圆切线的作法给出一种简单的椭圆切线作法。设P(x0 ,y0 )是椭圆 x2a2 +y2b2 =1上的任一点 ,求作经过此点的椭圆的切线。显然 ,当P(x0 ,y0 )是椭圆的顶点时 ,不难作出过该点的椭圆切线 ,因此可设P(x0 ,y0 )不是椭圆的顶点 ,这时有x0 ≠ 0 ,y0 ≠ 0。作法如下 :①如图 ,以坐标原点为圆心 ,以长半轴的长度a为半径作圆x2 +y2 =a2 ,②过点P作x轴的垂线交圆于点P′,③连接OP′,过点P′作圆的…  相似文献   

3.
本文介绍椭圆和双曲线切线的一个有趣性质 ,并说明其应用 .定理 经过椭圆 b2 x2 a2 y2 =a2 b2 (a>b>0 )或双曲线 b2 x2 - a2 y2 =a2 b2 (a>0 ,b>0 )的长轴或实轴两端点 A1 和 A2 的切线 ,与椭圆或双曲线上任一点的切线相交于 P1 和P2 ,则 |P1 A1 |· |P2 A2 |=b2 .证明 椭圆上任一点 P(acosθ,bsinθ)处的切线方程为 b2 ·acosθ· x a2 · bsinθ·y=a2 b2 即bcosθ·x asinθ·y- ab=0 .1又知点 A1 (- a,0 )和 A2 (a,0 )处的切线方程分别为 x=- a和 x=a,将它们分别与1联立解得 |P1 A1 |=|y P1|=b|1 cosθsinθ |,|P2 A2 |=|y P…  相似文献   

4.
笔者通过探究,得到圆锥曲线与切线有关的一个性质.性质1如图1,已知椭圆x2/a2+y2/b2=1(a>b>0),点A是椭圆在x轴上的一个顶点,S是椭圆上异于A的任一点,椭圆在S处的切线交x轴于点R,OS交椭圆在顶点A处的切线于点B,则SA//BR.  相似文献   

5.
受文献[1]的启发,本文给出圆锥曲线(椭圆、双曲线、抛物线)垂直于焦点所在对称轴的直线(简称“垂轴线”)的一个性质,并应用性质证明两组“姊妹”结论. 1 一组性质 性质1 已知椭圆Γ:x2/a2+y2/b2=1(a>b>0)与x轴交于A、B两点,直线l:x=m(| m |≠a)是垂直于x轴的一条定直线,P是椭圆Γ上异于A、B的任意一点,若直线PA交直线l于点M(m,y1),直线PB交直线l于点N(m,y2),则y1y2为定值b2/a2(a2-m2).  相似文献   

6.
人教版全日制普高教材《数学》第二册(上),求圆的切线方程,就出现一道例题,一道练习题,一道复习参考题.下面笔者就经过点(x,y),求圆的切线方程给出几种解法,并比较最佳求法.已知圆的方程(x?a)2+(y?b)2=r2,求经过点M(x0,y0)的切线方程.分析根据圆的切线性质,过圆上一点有且只有一条直线和圆相切,过圆外一点有且只有两条直线和圆相切.解法一不妨设切线的斜率为k(若k无解,则表示相应切线斜率不存在,以下同),则切线方程为y?y0=k(x?x0),把y=kx?(kx0?y0)代入(x?a)2+(y?b)2=r2,得222(x?a)+[kx?(kx0?y0+b)]=r,整理得22(1+k)x?2[k(kx0?y0+b)+a]x+222…  相似文献   

7.
文[1]给出了椭圆与双曲线如下一个有趣的性质.性质1给定椭圆C:x2/a2 y2/b2=1(a>b>0),A(?a,0)(或A(a,0))是长轴的左(或右)顶点,M(?a,m)(或M(a,m))(m≠0)是定直线L:x=?a(或x=a)上的一定点,过M引直线交C于点P、Q两点,则k AP kAQ为定值2b2/(am)(或?2b2/(am)).性质2给定双曲线C:x2/a  相似文献   

8.
文[1]给出了如下定理: 定理1 若A,B分别是椭圆x2/a2+y2/b2=1(a>b>0)短轴(长轴)的两个端点,P为椭圆上任意一点(不与A,B重合),直线PA,PB交长轴(短轴)所在直线于C,D两点,则椭圆在点P处的切线平分线段CD.  相似文献   

9.
错在哪里     
1.一些圆与两个坐标轴同时相切,求圆心的轨迹方程。解:设圆的方程是(x-a)~2 (y-b)~2=r~2,它与x轴y轴同时相切的条件是|a|=|b|=r,那么圆心坐标(a,b)是方程x±y=0的解,因此圆心轨迹方程是x±y=0。本题错在没有把原点排除在外。 2.已知A(x_1,y_1)是圆x~2 y~2=r~2上的一点,求证,与圆相切于A点的切线方程是x_1x y_1y=r~2。  相似文献   

10.
《数学通报》2004(5)文[1]的性质7给出了椭圆焦点三角形的一个性质,本文把它作为命题1在以椭圆x2/a2+y2/b2=1(a>b>0)的两个焦点F1、F2及椭圆上任一点P(除长轴两端点外)为顶点的△F1PF2中,∠F1PF2的外角平分线为l,过焦点F2(或F1)作l的垂线,垂足为D,则点D的轨迹方程为x2+y2=a2(y≠0),(如下左图)本文先把命题1推广引申到双曲线、抛物的情形,再作进一步引申.命题2在以双曲线x2/a2?y2/b2=1(a>0,b>0)的两个焦点F1、F2及双曲线上任一点P(除实轴两端点外)为顶点的△F1PF2中,∠F1PF2的平分线为l,过焦点F2(或F1)作l的垂线,垂足为D,则点D的…  相似文献   

11.
椭圆内接三角形本文是指以短轴为顶点的内接等腰三角形或等腰直角三角形 ,其余的显然由文[1]可再作研究 ,下面针对一道习题作一探讨。题 设椭圆 x2a2 +y2b2 =1(a >b >0 )的两焦点为F1、F2 ,长轴两端点为A1,A2 ,若椭圆上存在一点Q ,使∠A1QA2 =12 0° ,求椭圆离心率e的范围解 设点Q(x ,y)则kA1Q =yx+a,kA2 Q =yx -a,因为点Q在椭圆上 ,所以kA1Q ·kA2 Q =y2x2 -a2 =- b2a2 ,由夹角分式 ,得tan∠A1QA2 =kA2 Q -kA1Q1+kA1Q ·kA2 Q=- 5”b2a2 · 1kA1Q-kA1Q1- b2a2=-b2a2 · 1kA1Q+kA1Q1- b2a2≤- 2bac2a2=- 2abc2当且仅当kA1…  相似文献   

12.
试题如图,已知椭圆:x2/a2+y2/b2=1(a〉b〉0)的离心率为√2/2,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(√√+1).一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,  相似文献   

13.
(人教版)数学第二册(上)教案第171页[四、圆锥曲线的切线方程]中间一段:[若经过圆或椭圆外部一点,双曲线内部(不包含双曲线两焦点的平面区域,如满足x2/a2-y2/b2<1的点集)一点,抛物线外部(不包含抛物线焦点的平面区域,如满足y2>2px的点集)一点,都可以分别作圆、椭圆、双曲线、抛物线的两条切线].这段话中,对双曲线内部一点,都可以作双曲线的两条切线是不妥的,如:设双曲线x2/a2-y2/b2=1,根据渐近线的性质,我们知道过原点(0,0)作不出双曲线的切线.  相似文献   

14.
正文[1]、文[2]分别介绍了椭圆、双曲线的如下性质:命题1设点P是椭圆x2/a2+y2/b2=1(a0,b0)上的任一点,  相似文献   

15.
《中学数学杂志》2005年第2期《新发现圆锥曲线的一个性质》一文(下称文[1])中,姜坤崇老师给出了抛物线的一个有趣性质.本文对文[1]的性质给予引申并提出过抛物线上一点的切线的一个新作法.为方便起见,先摘录文[1]的性质.性质1[1]给定抛物线C:y2=2px(p>0),O是顶点,过y轴上一点M(0,m)(m≠0)引直线交C于P、Q两点,记kOP,kOQ分别为直线OP、OQ的斜率,则kOP+kOQ为定值2mp.1该性质的几个引申引申1给定抛物线C:y2=2px(p>0),O是顶点,P、Q为抛物线上两点,记kOP,kOQ分别为直线OP、OQ的斜率.若kOP+kOQ为定值K(K≠0),则直线PQ必与y轴相交…  相似文献   

16.
1引言文[1]给出了有心圆锥曲线22ax2±by2=1上一点P,PP'为曲线的直径,点Q为过P点切线与x轴的交点,过Q点任作一直线交曲线于M,N,P'M,P'N分别交x轴于M0,N0,则总有OM0=ON0.文[1]未指出:文中的性质能够推广到更一般的情形吗?回答是肯定的,我们有:推广设P为有心圆锥曲线22xa2±by2=1上一点,PP'为曲线直径,点Q为过P点切线上任意一点,过Q点任作一直线交曲线于M,N,直线QO交P'M,P'N分别于M0,N0,则总有OM0=ON0.2推广的证明分两种情况(1)当曲线为22ax2 by2=1时,如右图.设P(a cosθ,bsinθ),则P'(?a cosθ,?b sinθ),过P点的切线方程为…  相似文献   

17.
1·已知a,b为正实数,且满足a+b=2.(1)求1+1a+11+b的最小值;(2)猜想1+1a2+1+1b2的最小值,并证明;(3)求1+1an+1+1bn的最小值;(4)若a+b=2改成a+b=2p(p≥1),猜想1+1an+1+1bn的最小值.2·已知某椭圆的焦点是F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列.(1)求该椭圆的方程;(2)求弦AC中点的横坐标;(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.3·设曲线C:y=x2(x>0)上的点P0(x0,y0),过P0作曲线C的切线与x轴交于Q1,过Q…  相似文献   

18.
<正>已知椭圆C:x2/a2+y2/b2=1(a>b>0),点A1,A2分别为C的左、右顶点.结论1如图1,若椭圆C和动圆C1:x2+y2=t2(b相似文献   

19.
定理过双曲线上一点 P 作切线交渐近线于点A、B,则(1)PA=PB;(2)△OAB(O 为双曲线的中心)的面积为定值.证明:不妨设双曲线的方程为 x~2/a~2-y~2/b~2=1(a>0,b>0),渐近线为 y=±(b/a)x,P(x_0,y_0)为双曲线上任一点,则 AB 的方程为 xx_0/a~2-yy_0/b~2=1,与 y=±(b/a)x 联立,  相似文献   

20.
笔者曾在文[1]中给出如下结论: 定理给定双曲线c:x2/a2-y2/b2=1(a>0,b>0),P1是c上不在顶点的任一点,P1P2是c的垂直于y轴的弦,M1(0,-b),M2(0,b)是c虚轴的两个端点,则直线P1M1与P2M2的交点P仍在c上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号