首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
运用三角变换固然是解三角题的基本方法 ,但由于三角中的诱导公式较多 ,因此就形成了丰富多彩的变换技巧 .本文试图通过挖掘知识间的横向联系 ,针对题目的特点 ,另辟蹊径 ,实施非三角变换 .这对于发展智力、活跃思维、提高能力大有裨益 .1 代数化策略将三角函数用字母代换 ,转化成代数问题求解 .例 1 已知sinα-cosα =12 ,求sin4α cos4α-sin2 αcos2 α的值 .解 :设sinα =a ,cosα=b ,则a2 b2 =1a-b=12,从而解得 ,ab=38.∴sin4α cos4α -sin2 αcos2 α =(a2 b2 ) 2-3a2 b2 =1 -…  相似文献   

2.
在不等式证明中 ,一些不等式表面上看并未显露出三角化的可能 ,如果我们深入挖掘其隐含条件 ,构造等式 ,引进三角代换 ,利用三角知识常能使问题简捷获解例 1 已知a >b >0 ,求证 :3 a - 3 b <3 a -b .证明 ∵a >b >0 ,∴ (a -b) b =a ,于是可设 a -b =acos2 αb =asin2 α   0 <α <π2 .因此原不等式等价于 1- 3 sin2 α <3 cos2 α ,即 3 sin2 α 3 cos2 α >1.∵  0 <α <π2 ,∴ 0 <sin2 α ,cos2 α <1,于是有  3 sin2 α 3 cos2 α >sin2 α cos2 α =1.故 原不等式…  相似文献   

3.
题目 已知cos(α π4) =35,2π ≤α <32 π 求cos(2α π4)解法 1 由cos(α π4) =35,可得 cosα -sinα =3 25… (1)再由sin2 α cos2 α =1,得 :2cos2 α -625cosα -72 5=0 ,解得cosα =-210 或7210 ,又 π2 ≤α <32 π ,所以cosα=-210 ,sinα=-7210 ,所以cos2α=cos2 α-sin2 α=-2 42 5,sin2α =72 5所以cos(2α π4) =22 (cos2α -sin2α)=-3 1250 .解法 2 易知cosα=-210 ,记x =cos(2α π4)所以cos π4 cos(α π4) cos(2α π4) =[c…  相似文献   

4.
已知某些条件求三角函数的值或对应角是三角习题中常见题型 .这类习题难度不大 ,但学生在处理此类习题时常出现漏解、增解现象 .究其原因 ,是对题设中隐含着的角的范围挖掘不够所致 .本文结合具体例子谈谈这类习题中应注意挖掘的几个方面 .1.注意轴线角的挖掘轴线角是指角的终边落在坐标轴 (x轴或y轴 )上的角 ,这些角的三角函数值为特殊值或不存在 .解题时应注意挖掘 .例 1 已知sinα =2sinβ ,tgα =3tgβ,求cosα .误解 :∵cosα =sinαtgα=2sinβ3tgβ=23 cosβ ,∴cosβ =32 cosα .又sinβ …  相似文献   

5.
题目 已知 3sin2 α +2sin2 β =2sinα,求sin2 α +sin2 β的取值范围 .错解 ∵ 3sin2 α+2sin2 β=2sinα,∴sin2 α+sin2 β  =sin2 α +12 ( 2sinα -3sin2 α)  =-12 sin2 α+sinα  =-12 (sinα-1 ) 2 +12 .∵sinα∈ [-1 ,1 ],∴sin2 α +sin2 β∈ -32 ,12 .剖析 在上述求解过程中 ,已注意到sinα取值范围 :-1 ≤sinα≤ 1 ,但是还没有注意到题设条件对sinα的取值限制 .事实上 ,由 3sin2 α+2sin2 β=2sinα ,得sin2 β=12 ( 2sinα-3s…  相似文献   

6.
在三角函数这一章的学习过程中常遇到已知三角函数值求角度这方面问题 ,此类问题怎样求解较好呢 ?请看下面几例 :例 1 已知α、β都是锐角 ,且sinα =55,sinβ=1 01 0 ,求证 :α +β=π4.分析 ∵α、β都是锐角 ,且sinα =55,sinβ=1 01 0 ,∴cosα =1 -sin2 α=1 -15=2 55. cosβ=1 -sin2 β=1 -11 0 =3 1 01 0 .∴sin(α +β) =sinαcosβ+cosαsinβ=55×3 1 01 0 +2 55× 1 01 0 =22 .∴    α+β =π4.这种解法有没有错误呢 ?如果有 ,错误又在什么地方呢 ?∵ 0 <α<π2 ,0 <β<π2 ,∴ …  相似文献   

7.
在三角函数的条件求值问题中 ,常需要运用整体观念 ,巧变角 ,沟通条件式和欲求式之间的关系 .现举两例说明 .例 1 已知cosα-π3 =1 51 7.,-π2 <α<0 ,求cosα的值 .分析 若将条件式cosα-π3 直接展开求cosα ,虽然思路清晰 ,但无疑有一定的计算量 .若将α-π3 看作整体 ,则cosα =cosα -π3 +π3=12 cosα-π3 -32 sinα-π3=1 53 4-32 sinα -π3 ,∵ -π2 <α<0 ,∴ -5π6<α -π3 <-π3 ,∴sinα -π3 =-81 7,∴cosα=1 5+833 4.注 本题通过角的变换α=α-π3 +π3 ,只需求出sinα -π3 的值…  相似文献   

8.
由正、余弦的三倍角公式sin3θ =3sinθ- 4sin3 θ ,cos3θ=4cos3 θ- 3cosθ ,可得衍生公式 1sin3 α =14(3sinα -sin3α) ,cos3 α =14(3cosα +cos3α) .衍生公式 1的优点是 :对正弦、余弦的三次乘方形式可直接降幕 .例 1  (1994年全国高考题 )求函数y=1cos2 2x(sin3xsin3 x+cos3xcos3 x) +sin2x的最小值 .解 由公式 1,原函数变为y=1cos2 2x[sin3x· 14(3sinx-sin3x)  +cos3x· 14(cos3x+ 3cosx) ]+sin2x=1cos2 2x(34sinxs…  相似文献   

9.
定理 1 设α ,β ,γ∈R ,则有cos2 αsin( β γ)sin( β-γ) cos2 βsin(γ α)sin(γ -α) cos2 γsin(α β)sin(α - β) =0 . ( 1)  定理 2 设α ,β ,γ∈R ,则有sin2 αsin( β γ)sin( β -γ) sin2 βsin(γ α)sin(γ-α) sin2 γsin(α β)sin(α- β) =0 ( 2 )  证明 沿用文〔1〕、〔2〕的方法 ,构造二元一次方程组xcos2 α ycos2 β =cos2 γ , (a)xsin2 α ysin2 β =sin2 γ . (b)由 (a)、(b)两式可得xsin( β α)s…  相似文献   

10.
一、整体代入 解某些涉及若干个量的求值题时要有目标意识 ,将题中一些已知式子视作一个整体代入运算 ,可以避免非必求的量参与运算所带来的困难或麻烦 .例 1 已知tanαcotβ =5,求sin(α + β)csc(α - β)的值 .解 :∵ tanαcotβ =5,∴ sin(α + β)csc(α - β) =sin(α+ β)sin(α- β) =sinαcosβ +cosαsinβsinαcosβ -cosαsinβ=tanαcotβ + 1tanαcotβ - 1=32 .二、整体变形 对于某些问题 ,只是静止地观察整体 ,或许仍然不能取得满意的效果 ,若作整…  相似文献   

11.
数学问答     
58 .问 :已知secα -tanα =5,求sinα. (河南西平县高中一 ( 6 )班 颜 寅 )答 :secα-tanα=5=5·1=5(sec2 α -tan2 α) =5(secα +tanα) (secα -tanα) .故secα +tanα =15.与已知式联立 ,则secα=135,tanα=- 125.sinα =tanαcosα =- 1213.(解答 赵振华 )59.问 :若a、b、c均是不等于 0的常数 ,求函数y =(x +a) 2 +(x +b) 2 +(x +c) 2 的最值 . (浙江天台县平桥中学高三九班 许海燕 )答 :将原函数化为 y =3x2 +2 (a +b +c)x +(a2 +b2 +c2 ) .因 3>0 …  相似文献   

12.
最值问题是高中数学的重要内容之一 ,也是高考的热点 .本文通过对一道简单的最值问题的多维思考 ,来说明这类最值问题的一些常用求解方法 .题 已知 :a +b=1 ,且a>0 ,b >0 ,求1a +1b 的最小值 .思路 1 由已知a+b=1 ,联想到sin2 α+cos2 α =1 ,用三角代换方法求解 .解法 1 设a =sin2 α,b =cos2 α 0 <α<π2 ,则1a +1b =sec2 α+csc2 α=2 +tan2 α+cot2 α≥ 4,当且仅当α=π4,即a=b =12 时 ,取得最小值 4.思路 2 由a+b =1 ,有 1a+1b =1ab,联想到a +b2 ≥ ab ,可用基本不等式求解 .解…  相似文献   

13.
类比是依据两个事物所具有的相似性 ,推测它们在其他方面也可能存在相同或相似之处的一种思维方式 ,它虽不一定可靠 ,但却是提出新问题 ,获得新发现的一种重要方法 .本文运用同构类比 ,将三角问题化归为有关图形———几何问题来解决 .1 化归为单位圆由于sin2 α cos2 α =1,所以常常可以把点P(sinα ,cosα)或P(cosα ,sinα)看成是单位圆上的点 ,通过对单位圆的研究 ,解决三角函数的有关问题 .例 1 已知sinA sin3A sin5A =a ,cosA cos3A cos5A =b ,求证 :当b≠ 0时 ,tg3A =a/…  相似文献   

14.
在解决三角求值问题中 ,学生往往出现错解、漏解、增解甚至无从下手 ,原因是对题设条件理解不够深刻 ,不善于分析题设条件与结论中的角的相互关系 ,特别是对角的范围不注意 .本文通过例题说明上述问题 .一、注意考察轴线角这里所说的轴线角是指角的终边落在坐标轴 (x轴或y轴 )上的角 ,这些角的三角函数值为特殊值或不存在 ,解题时要小心 ,避免漏解、增解 .例 1 已知cosα =3cos β ,cotα =4cotβ ,求sinα .分析 题中涉及两个角α、β ,但求sinα ,故可利用sin2 β+cos2 β=1消去 β角 .由题设条件 ,得sin…  相似文献   

15.
在三角函数这一章里 ,由于公式多 ,解题方法比较灵活 ,但有时若解法选择不当 ,不仅解起来十分麻烦 ,而且还会出错 .下面分析一例 .例 若cosα -cosβ=12 ,①sinα-sin β=-13 .②求sin(α β) .对于①、②形式出现的三角习题 ,等式两边平方是常见解法 ,学生受其影响 ,产生了下面解法 .解 :①2 ②2 得2 -2cos(α -β) =1 33 6 ,所以有cos(α -β) =5972 ,①2 -②2 得cos 2α cos 2 β -2cos(α β) =53 6 ,即cos(α β)cos(α -β) -2cos(α β) =53 6 ,∴cos(α β) [2cos(α -β) -2 …  相似文献   

16.
公式sin2 α cos2 α =1反映了同一个锐角α的正弦和余弦之间的关系 .应用这一关系 ,许多较复杂的问题可获得简捷的解答 .例 1 sin53°cos37° cos53°sin37° =.( 1 998年山西省中考题 )解 ∵  53° 37°=90° ,∴ cos37°=sin53° ,sin37°=cos53°.∴ 原式 =sin2 53° cos2 53°=1 .例 2 已知sinα cosα=m ,sinα·cosα =n ,则m、n的关系是 (   ) .(A)m =n    (B)m =2n 1(C)m2 =2n 1 (D)m2 =1 -2n( 1 999年天津市中考题 )解 将sinα cosα =m…  相似文献   

17.
1 潜在假设潜在假设是指在题设中并未给定的条件或没有通过证明而得到的结论 ,在解题中常按自己的期望或经验不知不觉地予以肯定加以利用 .因此 ,在这个潜在假设的意识支配下 ,会对问题加以限制或对题目的条件视而不见 ,造成解题失误 .例 1 已知 3sin2 α 2sin2 β =2sinα ,求sin2 α sin2 β的取值范围 .错解 :sin2 α sin2 β=sin2 α 2sinα -3sin2 α2 =-sin2 α2 sinα ,由sinα∈ [-1 ,1 ]知sin2 α sin2 β的取值范围是[-32 ,12 ].评注 :稍有一点反馈意识的同学就知道答案有误 ,…  相似文献   

18.
求三角函数的最值问题是三角函数中较为重要的一个知识点;其题目类型变化多端.解法灵活多变,若能在教学中不断的归纳总结,则可培养学生多向思维的能力.本文就此举例介绍几种常用方法.1 化为Asin(wx+φ)+K的形式例1 求函数y=sin2x+2sinx·cosx+3cos2x的最大值解:y=sin2x+2sinx·cosx+3cos2x=2sinxcosx+2cos2x+1=sin2x+cos2x+2=2sin(2x+π4)+2∴当sin(2x+π4)=1时, ymax=2+22 配方法例2 求函数y=1-5sinx+2cos2x的最小值解:y=1-5sinx+2cos2x…  相似文献   

19.
错在哪里     
1 安徽淮南十六中 刘华为  (邮编 :2 32 0 53)题 已知cosαcosβ =1 /2 ,sinαsinβ =m ,求m的取值范围。解一 ∵cosαcosβ sinαsinβ=( 1 /2 ) m ,∴cos(α -β) =( 1 /2 ) m ,∴ -1≤ ( 1 /2 ) m≤ 1 ,∴ -3/2≤m≤ 1 /2。又 -1≤sinαsinβ≤ 1 ,故 -1≤m≤ 1 /2。解二 仿照解法一易得cos(α β) =( 1 /2 ) -m ,综合 -1≤cos(α β)≤ 1 ,得 -1 /2≤m≤ 3/2。又 -1≤sinαsinβ≤ 1 ,故 -1 /2≤m≤ 1。解三 ∵ 1 /4 =cos2 αcos2 β=( 1 -sin2 α) ( 1 -…  相似文献   

20.
我们知道 ,asinα+bcosα =a2 +b2 sin(α +φ) ,其中 φ角所在象限由a、b的符号确定 ,φ角的值由tanφ =ba 确定 ,这个公式称为辅助角公式 .该公式在解题中有广泛的应用 .一、求最值例 1 求函数 y =3sin(x +2 0°) +5sin(x +80°)的最大、最小值 .解 :令θ =x +2 0°,则y =3sinθ +5sin(θ +6 0°) =3sinθ+512 sinθ+32 cosθ =112 sinθ +52 3cosθ=7sin(θ +φ) .∴ y的最大、最小值分别为 7、- 7.二、求值例 2 若函数f(x) =sin2x +acos2x的图象关于直线x =- …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号