首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visualizing anatomical structures and functional processes in three dimensions (3D) are important skills for medical students. However, contemplating 3D structures mentally and interpreting biomedical images can be challenging. This study examines the impact of a new pedagogical approach to teaching neuroanatomy, specifically how building a 3D‐model from oil‐based modeling clay affects learners’ understanding of periventricular structures of the brain among undergraduate medical students in Colombia. Students were provided with an instructional video before building the models of the structures, and thereafter took a computer‐based quiz. They then brought their clay models to class where they answered questions about the structures via interactive response cards. Their knowledge of periventricular structures was assessed with a paper‐based quiz. Afterward, a focus group was conducted and a survey was distributed to understand students’ perceptions of the activity, as well as the impact of the intervention on their understanding of anatomical structures in 3D. Quiz scores of students that constructed the models were significantly higher than those taught the material in a more traditional manner (P < 0.05). Moreover, the modeling activity reduced time spent studying the topic and increased understanding of spatial relationships between structures in the brain. The results demonstrated a significant difference between genders in their self‐perception of their ability to contemplate and rotate structures mentally (P < 0.05). The study demonstrated that the construction of 3D clay models in combination with autonomous learning activities was a valuable and efficient learning tool in the anatomy course, and that additional models could be designed to promote deeper learning of other neuroanatomy topics. Anat Sci Educ 11: 137–145. © 2017 American Association of Anatomists.  相似文献   

2.
A novel three-dimensional tool for teaching human neuroanatomy   总被引:1,自引:0,他引:1  
Three‐dimensional (3D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross‐sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented and evaluated a new tool for teaching 3D neuroanatomy to first‐year medical students at Boston University School of Medicine. Students were randomized into experimental and control classrooms. All students were taught neuroanatomy according to traditional 2D methods. Then, during laboratory review, the experimental group constructed 3D color‐coded physical models of the periventricular structures, while the control group re‐examined 2D brain cross‐sections. At the end of the course, 2D and 3D spatial relationships of the brain and preferred learning styles were assessed in both groups. The overall quiz scores for the experimental group were significantly higher than the control group (t(85) = 2.02, P < 0.05). However, when the questions were divided into those requiring either 2D or 3D visualization, only the scores for the 3D questions were significantly higher in the experimental group (F1,85= 5.48, P = 0.02). When surveyed, 84% of students recommended repeating the 3D activity for future laboratories, and this preference was equally distributed across preferred learning styles (χ2 = 0.14, n.s.). Our results suggest that our 3D physical modeling activity is an effective method for teaching spatial relationships of brain anatomy and will better prepare students for visualization of 3D neuroanatomy, a skill essential for higher education in neuroscience, neurology, and neurosurgery. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

3.
Innovative educational strategies can provide variety and enhance student learning while addressing complex logistical and financial issues facing modern anatomy education. Observe‐Reflect‐Draw‐Edit‐Repeat (ORDER), a novel cyclical artistic process, has been designed based on cognitivist and constructivist learning theories, and on processes of critical observation, reflection and drawing in anatomy learning. ORDER was initially investigated in the context of a compulsory first year surface anatomy practical (ORDER‐SAP) at a United Kingdom medical school in which a cross‐over trial with pre‐post anatomy knowledge testing was utilized and student perceptions were identified. Despite positive perceptions of ORDER‐SAP, medical student (n = 154) pre‐post knowledge test scores were significantly greater (P < 0.001) with standard anatomy learning methods (3.26, SD = ±2.25) than with ORDER‐SAP (2.17, ±2.30). Based on these findings, ORDER was modified and evaluated in the context of an optional self‐directed gross anatomy online interactive tutorial (ORDER‐IT) for participating first year medical students (n = 55). Student performance was significantly greater (P < 0.001) with ORDER‐IT (2.71 ± 2.17) when compared to a control tutorial (1.31 ± 2.03). Performances of students with visual and artistic preferences when using ORDER were not significantly different (P > 0.05) to those students without these characteristics. These findings will be of value to anatomy instructors seeking to engage students from diverse learning backgrounds in a research‐led, innovative, time and cost‐effective learning method, in the context of contrasting learning environments. Anat Sci Educ 10: 7–22. © 2016 American Association of Anatomists.  相似文献   

4.
Ultrasonography is increasingly used in medical education, but its impact on learning outcomes is unclear. Adding ultrasound may facilitate learning, but may also potentially overwhelm novice learners. Based upon the framework of cognitive load theory, this study seeks to evaluate the relationship between cognitive load associated with using ultrasound and learning outcomes. The use of ultrasound was hypothesized to facilitate learning in anatomy for 161 novice first‐year medical students. Using linear regression analyses, the relationship between reported cognitive load on using ultrasound and learning outcomes as measured by anatomy laboratory examination scores four weeks after ultrasound‐guided anatomy training was evaluated in consenting students. Second anatomy examination scores of students who were taught anatomy with ultrasound were compared with historical controls (those not taught with ultrasound). Ultrasound's perceived utility for learning was measured on a five‐point scale. Cognitive load on using ultrasound was measured on a nine‐point scale. Primary outcome was the laboratory examination score (60 questions). Learners found ultrasound useful for learning. Weighted factor score on “image interpretation” was negatively, but insignificantly, associated with examination scores [F (1,135) = 0.28, beta = ?0.22; P = 0.61]. Weighted factor score on “basic knobology” was positively and insignificantly associated with scores; [F (1,138) = 0.27, beta = 0.42; P = 0.60]. Cohorts exposed to ultrasound had significantly higher scores than historical controls (82.4% ± SD 8.6% vs. 78.8% ± 8.5%, Cohen's d = 0.41, P < 0.001). Using ultrasound to teach anatomy does not negatively impact learning and may improve learning outcomes. Anat Sci Educ 10: 144–151. © 2016 American Association of Anatomists.  相似文献   

5.
6.
The purpose of this project was to develop Web‐based learning modules that combine (1) animated 3D graphics; (2) 3D models that a student can manipulate independently; (3) passage of time in embryonic development; and (4) animated 2D graphics, including 2D cross‐sections that represent different “slices” of the embryo, and animate in parallel. These elements were presented in two tutorials, one depicting embryonic folding and the other showing development of the nervous system after neural tube formation. The goal was to enhance the traditional teaching format—lecture combined with printed diagrams, text, and existing computer animations—with customized, guided, Web‐based learning modules that surpassed existing resources. To assess module effectiveness, we compared quiz performance of control groups who attended lecture and did not use a supporting module, with study groups who used a module in addition to attending lecture. We also assessed our students' long‐term retention of the material, comparing classes who had used the module with students from a previous year that had not seen the module. Our data analysis suggests that students who used a module performed better than those given only traditional resources if they used the module after they were already somewhat familiar with the material. The findings suggest that our modules—and possibly computer‐assisted‐instruction modules in general—are more useful if used toward the later stages of learning, rather than as an initial resource. Furthermore, our data suggest that the animation aids in long‐term retention. Both medical students at the University of Cincinnati and medical faculty from across the country commented favorably on their experiences with the embryonic development modules. Anat Sci Ed 1:252–257, 2008. © 2008 American Association of Anatomists.  相似文献   

7.
Binocular disparity provides one of the important depth cues within stereoscopic three-dimensional (3D) visualization technology. However, there is limited research on its effect on learning within a 3D augmented reality (AR) environment. This study evaluated the effect of binocular disparity on the acquisition of anatomical knowledge and perceived cognitive load in relation to visual-spatial abilities. In a double-center randomized controlled trial, first-year (bio)medical undergraduates studied lower extremity anatomy in an interactive 3D AR environment either with a stereoscopic 3D view (n = 32) or monoscopic 3D view (n = 34). Visual-spatial abilities were tested with a mental rotation test. Anatomical knowledge was assessed by a validated 30-item written test and 30-item specimen test. Cognitive load was measured by the NASA-TLX questionnaire. Students in the stereoscopic 3D and monoscopic 3D groups performed equally well in terms of percentage correct answers (written test: 47.9 ± 15.8 vs. 49.1 ± 18.3; P = 0.635; specimen test: 43.0 ± 17.9 vs. 46.3 ± 15.1; P = 0.429), and perceived cognitive load scores (6.2 ± 1.0 vs. 6.2 ± 1.3; P = 0.992). Regardless of intervention, visual-spatial abilities were positively associated with the specimen test scores (η2 = 0.13, P = 0.003), perceived representativeness of the anatomy test questions (P = 0.010) and subjective improvement in anatomy knowledge (P < 0.001). In conclusion, binocular disparity does not improve learning anatomy. Motion parallax should be considered as another important depth cue that contributes to depth perception during learning in a stereoscopic 3D AR environment.  相似文献   

8.
While prior meta-analyses in anatomy education have explored the effects of laboratory pedagogies and histology media on learner performance, the effects of student-centered learning (SCL) and computer-aided instruction (CAI) have not been broadly evaluated. This research sought to answer the question, “How effective are student-centered pedagogies and CAI at increasing student knowledge gains in anatomy compared to traditional didactic approaches?” Relevant studies published within the past 51 years were searched using five databases. Predetermined eligibility criteria were applied to the screening of titles and abstracts to discern their appropriateness for study inclusion. A summary effect size was estimated to determine the effects of SCL and CAI on anatomy performance outcomes. A moderator analysis of study features was also performed. Of the 3,035 records screened, 327 underwent full-text review. Seven studies, which comprised 1,564 participants, were included in the SCL analysis. An additional 19 studies analyzed the effects of CAI in the context of 2,570 participants. Upon comparing SCL to traditional instruction, a small positive effect on learner performance was detected (standardized mean difference (SMD = 0.24; [CI = 0.07, 0.42]; P = 0.006). Likewise, students with CAI exposure moderately outscored those with limited or no access to CAI (SMD = 0.59; [CI = 0.20, 0.98]; P = 0.003). Further analysis of CAI studies identified effects (P ≤ 0.001) for learner population, publication period, interventional approach, and intervention frequency. Overall, learners exposed to SCL and supplemental CAI outperformed their more classically-trained peers as evidenced by increases in short-term knowledge gains. Anat Sci Educ. © 2018 American Association of Anatomists.  相似文献   

9.
Despite the importance of body donation for medical education and the advancement of medical science, cadaveric donation remains suboptimal worldwide. The purpose of this study was to evaluate the willingness of body donation in Greece and determine the characteristics of donors. This cross‐sectional questionnaire survey was conducted from January to June 2011. A specially designed questionnaire was distributed to 1,700 individuals who were randomly selected from five major Greek cities. It was found that higher educational levels (P = 0.002), annual family income below 30,000 Euros (P = 0.001), guaranteed employment status (P = 0.02), and the presence of comorbid conditions (P = 0.004) seemed to affect potential donors' willingness for cadaveric donation. Those with strong religious beliefs were found to be unwilling to donate their bodies to medical science. Interestingly, the majority of participants who believed that hospitalized patients are deceived or are used for harmful experiments were willing to become whole body donors (P = 0.043). In Greece, the rate of body donation to medical science remains low, and most Greek citizens are not willing to become body donors. Efforts to encourage discussions about whole body donation should be implemented in order to improve current low levels of donation. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

10.
Many new methods have contributed to the learning of anatomy, including several interactive methods, increasing the effectiveness of educational programs. The effectiveness of an educational program involving several interactive learning methods such as problem-based learning and reciprocal peer teaching was researched in this study. A quasi-experimental before–after study on three consecutive groups of second-year students at the Grenoble School of Medicine was conducted. The lectures were replaced by an educational program based on the problem-based learning method and reciprocal peer teaching. The first session was dedicated to reading clinical cases illustrating the medical concept, so that the learning objectives for the second session could be set. Then, after viewing digital courses, the second session was dedicated to a synthetic presentation by the students themselves, followed by an interactive summary with the teacher. The analysis of 630 students showed a significant increase in the theory test results for those who took part in the intervention: 9.71 versus 9.19 (β = 0.57, P = 0.036). Moreover, satisfaction was high after the intervention (mean = 4.5/5), and when comparing the two pedagogical approaches the students showed a clear preference for the program implemented with the concepts highlighted such as interactivity, in-depth work, group work, and autonomy. A multifaceted interactive pedagogy program could have a significant impact on the results of the theoretical concepts presented and on satisfaction as well as increased investment by students in learning anatomy.  相似文献   

11.
The complexity of the material being taught in clinical neuroscience within the medical school curriculum requires creative pedagogies to teach medical students effectively. Many clinical teaching strategies have been developed and are well described to address these challenges. However, only a few have been evaluated to determine their impact on the performance of students studying clinical neuroscience. Interactive, 2‐hour, self‐directed small‐group interactive clinical case‐based learning sessions were conducted weekly for 4 weeks to integrate concepts learned in the corresponding didactic lectures. Students in the small groups analyzed cases of patients suffering from neurological disease that were based on eight learning objectives that allowed them to evaluate neuroanatomical data and clinical findings before presenting their case analysis to the larger group. Students’ performances on the formative quizzes and summative tests were compared to those of first‐year medical students in the previous year for whom the self‐directed, small‐group interactive clinical sessions were not available. There was a significant improvement in the summative performance of first‐year medical students with self‐directed clinical case learning in the second year (Y2) of teaching clinical neuroscience (P < 0.05) when compared with first‐year students in the first year (Y1) for whom the self‐directed learning approach was not available. Student performance in the formative assessments between Y1 and Y2 was not significantly different (P = 0.803). A target of ≥70% student scoring above 80% in the final summative examination was met. The current study revealed evidence for the impact and educational outcomes of a self‐directed, clinical teaching strategy in a clinical neuroscience curriculum for first‐year medical students. Anat Sci Educ 11: 478–487. © 2017 American Association of Anatomists.  相似文献   

12.
There is growing demand from accrediting agencies for improved basic science integration into fourth-year medical curricula and inculcation of medical students with teaching skills. The objective of this study was to determine the effectiveness of a fourth-year medical school elective course focused on teaching gross anatomy on anatomical knowledge and teaching confidence. Fourth-year medical student “teacher” participants' gross anatomy knowledge was assessed before and after the course. Students rated their overall perceived anatomy knowledge and teaching skills on a scale from 0 (worst) to 10 (best), and responded to specific knowledge and teaching confidence items using a similar scale. First-year students were surveyed to evaluate the effectiveness of the fourth-year student teaching on their learning. Thirty-two students completed the course. The mean anatomy knowledge pretest score and posttest scores were 43.2 (±22.1) and 74.1 (±18.4), respectively (P < 0.001). The mean perceived anatomy knowledge ratings before and after the course were 6.19 (±1.84) and 7.84 (±1.30), respectively (P < 0.0001) and mean perceived teaching skills ratings before and after the course were 7.94 (±1.24) and 8.53 (±0.95), respectively (P = 0.002). Student feedback highlighted five themes which impacted fourth-year teaching assistant effectiveness, including social/cognitive congruence and improved access to learning opportunities. Together these results suggest that integrating fourth-year medical students in anatomy teaching increases their anatomical knowledge and improves measures of perceived confidence in both teaching and anatomy knowledge. The thematic analysis revealed that this initiative has positive benefits for first-year students.  相似文献   

13.
This study describes a new teaching model for ultrasound (US) training, and evaluates its effect on medical student attitudes toward US. First year medical students participated in hands‐on US during human gross anatomy (2014 N = 183; 2015 N = 182). The sessions were facilitated by clinicians alone in 2014, and by anatomy teaching assistant (TA)‐clinician pairs in 2015. Both cohorts completed course evaluations which included five US‐related items on a four‐point scale; cohort responses were compared using Mann‐Whitney U tests with significance threshold set at 0.05. The 2015 survey also evaluated the TAs (three items, five‐point scale). With the adoption of the TA‐clinician teaching model, student ratings increased significantly for four out of five US‐items: “US advanced my ability to learn anatomy” increased from 2.91 ± 0.77 to 3.35 ± 0.68 (P < 0.0001), “Incorporating US increased my interest in anatomy” from 3.05 ± 0.84 to 3.50 ± 0.71 (P < 0.0001), “US is relevant to my current educational needs” from 3.36 ± 0.63 to 3.54 ± 0.53 (P = 0.015), and “US training should start in Phase I” from 3.36 ± 0.71 to 3.56 ± 0.59 (P = 0.010). Moreover, more than 84% of students reported that TAs enhanced their understanding of anatomy (mean 4.18 ± 0.86), were a valuable part of US training (mean 4.23 ± 0.89), and deemed the TAs proficient in US (mean 4.24 ± 0.86). By using an anatomy TA‐clinician teaching team, this study demonstrated significant improvements in student perceptions of the impact of US on anatomy education and the relevancy of US training to the early stages of medical education. Anat Sci Educ 11: 175–184. © 2017 American Association of Anatomists.  相似文献   

14.
Researchers have found that teacher preparation programs are not universally preparing teacher candidates in concepts associated with the alphabetic principle. Yet, the majority of students with reading disabilities or who struggle with beginning reading have difficulty with phonology and concepts associated with the alphabetic principle. The purpose of this study was to examine the efficacy of a series of multimedia modules on participants' (N = 76) knowledge and skills related to early reading instruction. The multimedia modules covered basic literacy concepts primarily related to phonology and phonics. Results from the experimental, control-group design indicated that the modules were successful in teaching foundational literacy constructs to participants. Thus, multimedia modules may be a promising avenue for providing instruction for teacher candidates. Additional research, however, is needed to ensure mastery of knowledge and to evaluate how principles of effective instruction can guide multimedia module use by teacher educators.  相似文献   

15.
In the current No Child Left Behind era, K‐12 teachers and principals are expected to have a sophisticated understanding of standardized test results, use them to improve instruction, and communicate them to others. The goal of our project, funded by the National Science Foundation, was to develop and evaluate three Web‐based instructional modules in educational measurement and statistics to help school personnel acquire the “assessment literacy” required for these roles. Our first module, “What's the Score?” was administered in 2005 to 113 educators who also completed an assessment literacy quiz. Viewing the module had a small but statistically significant positive effect on quiz scores. Our second module, “What Test Scores Do and Don't Tell Us,” administered in 2006 to 104 educators, was even more effective, primarily among teacher education students. In evaluating our third module, “What's the Difference?” we were able to recruit only 33 participants. Although those who saw the module before taking the quiz outperformed those who did not, results were not statistically significant. Now that the research phase is complete, all ITEMS instructional materials are freely available on our Website.  相似文献   

16.
Despite reductions in the importance, time committed to, and status of anatomical education in modern medical curricula, anatomical knowledge remains a cornerstone of medicine and related professions. Anatomists are therefore presented with the challenge of delivering required levels of core anatomical knowledge in a reduced time‐frame and with fewer resources. One common response to this problem is to reduce the time available for students to interact with human specimens (either via dissection or handling of prosected material). In some curricula, these sessions are replaced with didactic or problem‐based approaches focussed on transmitting core anatomical concepts. Here, I propose that the adoption of philosophical principles concerning the relationship and differences between “direct experience” and “concept” provides a strong case in support of requiring students to gain significant exposure to human material. These insights support the hypothesis that direct experience of human material is required for “deep,” rather than “superficial,” understanding of anatomy. Anat Sci Ed 1:264–266, 2008. © 2008 American Association of Anatomists.  相似文献   

17.
Surgical anatomy is taught early in medical school training. The literature shows that many physicians, especially surgical specialists, think that anatomical knowledge of medical students is inadequate and nesting of anatomical sciences later in the clinical curriculum may be necessary. Quantitative data concerning this perception of an anatomical knowledge deficit are lacking, as are specifics as to what content should be reinforced. This study identifies baseline areas of strength and weakness in the surgical anatomy knowledge of medical students entering surgical rotations. Third‐year medical students completed a 20–25‐question test at the beginning of the General Surgery and Obstetrics and Gynecology rotations. Knowledge of inguinal anatomy (45.3%), orientation in abdominal cavity (38.8%), colon (27.7%), and esophageal varices (12.8%) was poor. The numbers in parentheses are the percentage of questions answered correctly per topic. In comparing those scores to matched test items from this cohort as first‐year students in the anatomy course, the drop in retention overall was very significant (P = 0.009) from 86.9 to 51.5%. Students also scored lower in questions relating to pelvic organs (46.7%), urogenital development (54.0%), pulmonary development (17.8%), and pregnancy (17.8%). These data showed that indeed, knowledge of surgical anatomy is poor for medical students entering surgical clerkships. These data collected will be utilized to create interactive learning modules, aimed at improving clinically relevant anatomical knowledge retention. These modules, which will be available to students during their inpatient surgical rotations, connect basic anatomy principles to clinical cases, with the ultimate goal of closing the anatomical knowledge gap. Anat Sci Educ 7: 461–468. © 2014 American Association of Anatomists.  相似文献   

18.
Teaching internal structures obscured from direct view is a major challenge of anatomy education. High-fidelity interactive three-dimensional (3D) micro-computed tomography (CT) models with virtual dissection present a possible solution. However, their utility for teaching complex internal structures of the human body is unclear. The purpose of this study was to investigate the use of a realistic 3D micro-CT interactive visualization computer model to teach paranasal sinus anatomy in a laboratory setting during pre-clinical medical training. Year 1 (n = 79) and Year 2 (n = 59) medical students undertook self-directed activities focused on paranasal sinus anatomy in one of two laboratories (traditional laboratory and 3D model). All participants completed pre and posttests before and after the laboratory session. Results of regression analyses predicting post-laboratory knowledge indicate that, when students were inexperienced with the 3D computer technology, use of the model was detrimental to learning for students with greater prior knowledge of the relevant anatomy (P < 0.05). For participants experienced with the 3D computer technology, however, the use of the model was detrimental for students with less prior knowledge of the relevant anatomy (P < 0.001). These results emphasize that several factors need to be considered in the design and effective implementation of such models in the classroom. Under the right conditions, the 3D model is equal to traditional laboratory resources when used as a learning tool. This paper discusses the importance of preparatory training for students and the technical consideration necessary to successfully integrate such models into medical anatomical curricula.  相似文献   

19.
Spatial ability is an important factor in learning anatomy. Students with high scores on a mental rotation test (MRT) systematically score higher on anatomy examinations. This study aims to investigate if learning anatomy also oppositely improves the MRT‐score. Five hundred first year students of medicine (n = 242, intervention) and educational sciences (n = 258, control) participated in a pretest and posttest MRT, 1 month apart. During this month, the intervention group studied anatomy and the control group studied research methods for the social sciences. In the pretest, the intervention group scored 14.40 (SD: ± 3.37) and the control group 13.17 (SD: ± 3.36) on a scale of 20, which is a significant difference (t‐test, t = 4.07, df = 498, P < 0.001). Both groups show an improvement on the posttest compared to the pretest (paired samples t‐test, t = 12.21/14.71, df = 257/241, P < 0.001). The improvement in the intervention group is significantly higher (ANCOVA, F = 16.59, df = 1;497, P < 0.001). It is concluded that (1) medical students studying anatomy show greater improvement between two consecutive MRTs than educational science students; (2) medical students have a higher spatial ability than educational sciences students; and (3) if a MRT is repeated there seems to be a test effect. It is concluded that spatial ability may be trained by studying anatomy. The overarching message for anatomy teachers is that a good spatial ability is beneficial for learning anatomy and learning anatomy may be beneficial for students' spatial ability. This reciprocal advantage implies that challenging students on spatial aspects of anatomical knowledge could have a twofold effect on their learning. Anat Sci Educ 6: 257–262. © 2013 American Association of Anatomists.  相似文献   

20.
The use of augmented reality (AR) in teaching and studying neuroanatomy has been well researched. Previous research showed that AR-based learning of neuroanatomy has both alleviated cognitive load and was attractive to young learners. However, how the attractiveness of AR effects student motivation has not been discovered. Therefore, the motivational effects of AR were investigated in this research by the use of quantitative and qualitative methods. Motivation elicited by the GreyMapp-AR, an AR application, was investigated in medical and biomedical sciences students (n = 222; mean age: 19.7 ± 1.4 years) using the instructional measure of motivation survey (IMMS). Additional components (i.e., attention, relevance, confidence, and satisfaction) were also evaluated with motivation as measured by IMMS. Additionally, 19 students underwent audio-recorded individual interviews which were transcribed for qualitative analysis. Males regarded the relevance of AR significantly higher than females (P < 0.024). Appreciation of the GreyMapp-AR program was found to be significantly higher in students studying biomedical sciences as compared to students studying medicine (P < 0.011). Other components and scores did not show significant differences between student groups. Students expressed that AR was beneficial in increasing their motivation to study subcortical structures, and that AR could be helpful and motivating for preparing an anatomy examination. This study suggests that students are motivated to study neuroanatomy by the use of AR, although the components that make up their individual motivation can differ significantly between groups of students.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号