首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
复数z=a+bi(a、b∈R)与复平面上的点Z(a,b)一一对应,而点Z(a,b)与向量OZ一一对应,可以将Z(a,b)和OZ都看成是复数z=a+bi的几何形式.从向量的发展历史来看,向量能够进入数学并得以发展,复数在其中出力不少.复数几何表示的提出,既使得"虚幻"的复数有了实际的模型,不再虚幻;又使得人们在逐步接受复数的同时,学会利用复数来表示和研究平面中的向量,向量从此得到发展.发展至今天的向量,如果与复数再度携手,又能在哪些方面有所作为呢?  相似文献   

2.
复数     
课时一 复数的概念及其向量表示 基础篇 诊断练习一、填空题1.正整数集 N*、自然数集 N、整数集 Z、有理数集Q、实数集 R、复数集 C之间有包含关系 .2 .复数 z =a +bi( a、b∈ R) ,当且仅当时 ,z为实数 ;当且仅当时 ,z为虚数 ;当且仅当时 ,z为纯虚数 .3.如果 a、b、c、d∈ R,那么 a +bi =c +di .两个复数不全为实数时 ,不能比较它们的大小 ,只能为 .4 .建立了复平面后 ,复数 z =a +bi( a,b∈ R)与复平面上的点 Z( a,b) ,与复平面内以原点 O为起点 ,点 Z( a,b)为终点的向量 OZ .向量 OZ的长度叫做 ,记为 |z|,故有 |z|=|OZ|=.二、选…  相似文献   

3.
任意一个复数z=a bi(a、b∈R)都与复平面内以原点O为始点,复数z在复平面内的对应点Z为终点的向量一一对应.复数的辐角是以x轴的正半轴为始边,向量OZ所在的射线(起点是O)为终边的角θ.任  相似文献   

4.
一个复数z=a bi,(a,b∈R),对应着复平面上唯一的点Z(a,b),也对应着复平面上唯一的从原点出发的向量OZ;反之亦然。从而可以用几何思想来解释复数问题,也可以用复数方法来研究几何问题。下面我们通过例子来说明怎样用复数方法来处理几何问题。 一、计算与求值 例1 直角三角形ABC中,∠C=π/2,BC=AC/3,点E在AC上,且EC=2AE,求∠CBE ∠CBA。  相似文献   

5.
全日制十年制学校高中课本数学第三册P:77说:“(复平面的虚轴不包括原点;原点在实轴上,表示数0)”。人民教育出版社出版全日制十年制高中数学第三册参考书P:76—77也写道:“复平面与一般的坐标平面的唯一区别就是平面的虚轴不包括原点”。笔者认为有商榷的必要。 1.复数Z=a+bi由有序的实数对(a,b)唯一确定,且a叫实部,b叫虚部。用直角坐标平面上的点表示复数Z时,实部a在x轴上取,此时,x轴叫实轴;虚部b在y轴上  相似文献   

6.
在复平面上,任意一点(x,y)可用复数z=x iy表示;反之,任意一个复数z=x iy亦表示复平面上的一个点(x,y)。复数与复平面上的点之间建立了一一对应关系。同样,从原点O到复数z=x iy所引的向量与这复数Z也建立一一对应关系。为了方便,我们将“复数”、“点”与“向量”不加区别。  相似文献   

7.
在高二数学“复数”这一章的学习中,如何在复平面内求动点Z的轨迹方程是复数知识的一个重点,也是一个难点.在复平面内,动点对应的是一对变化的实数,动点轨迹是实数方程f(x,y)=0;而在复平面内,动点对应的是一个变化的复数,动点轨迹的复数方程是f(z)=0.这两个方程在本质上是完全一致的,都是以数表示点,以方程表示曲线,但在形式上并不相同,所以在复平面内求点Z的轨迹可以利用、借鉴实平面内求轨迹的方法,还可以利用复数所具有的特殊性质另辟蹊径.下边略举几例说明求轨迹复数方程的一些方法.  相似文献   

8.
知白 《考试》1999,(10)
在中学,复数 z 有三种表示形式:代数形式(z=α bi,其中,α,b∈R),三角形式(z=r(cosθ isinθ),其=中 r>0)与几何表示(复数 z=α bi 与复平面内的点Z(a,b)或向量■一一对应),因此,在解决复数问题时,就可以利用复数的代数表示、三角表示或几何表示中的一种加以解决.在某些问题中,把复数 z 看作一个整体加以处理,也是一种思路.总之,在解决复数问题时,有上述四种解题思路,其中前三种是常用的.问题的关键之一是恰当的选择复数 z 的某种表示,从而可以优化解题过程.下面举几个例子说明.  相似文献   

9.
在中学里,引入虚数单位i以后,实系数的一元代数方程(任意次)就都可解了。复数的这一“功绩”似乎应该使人对它存在的必要性不再发生怀疑。但是事实不然,学生学过复数以后,还是不大相信它,觉得复数虚无飘渺,难以捉摸。发生这种情况,最主要的原因是没有了解复数究竟有什么具体意义,在什么地方可以派得上用场。这里让我们很粗略地介绍一下复数的一些应用。一、平面上的点、向量、复数我们知道,复数a bi的几何表示是平面上一点(a,b)。平面上每一点可以用一对实数来表示,也可以用一个复数来表示。平面还是同一个,只是用了不同的方法绘出它的表示而已。正象一个人尽管有好几个名字,但被表示的都是同一个人。用复数来表示平面上的点,优点是只要用“一”个数表示一个点,这样就便于进行运算。  相似文献   

10.
一、复数 1.数_称为虚数单位。 2.i的幂有周期性,所以_=1、 =1、=i、=-i。 3.1 i i~2 … i~(50)_。 4.复数Z的代数形式是_、三角形 式是_。 5.复数Z=a bi(其中a、b都为实数)中a叫做_、bi叫做_、b叫做_;Z表示实数需满足_,Z表示0需满足_且_,Z表示虚数需满足_,Z表示纯虚数需满足_且_。 6.两个复数Z=a bi、Z_1=c di ,Z=Z_1的条件是_和_。 7.如果两个复数都是_,可以比较大小,如果_,就不能比较大小。 8.在复平面上x轴称为_,y轴称为_,原点O在_上,它表示_。 9.两个互为共轭复数Z与的实部 _,虚部_;Z =,Z-= ,Z·=,=。 10.复数Z=a bi可以用复平面以 _为起点,点_为终点的向量来表示,向量的_叫做这个向量的模。 11.复数Z=a bi(a≠0)的幅角θ可用公式_求得,模可用公式_求得。两个共轭复数的模_。 12.Z=a bi化成r(cosθ iSinθ)来表示,其中模r=_,幅角θ有公式cos=_,sinθ=_。 13.复数幅角θ的主值取_,在电  相似文献   

11.
一、自主探究——让学生体验“再创造”实践证明,学习者不实行“再创造”,对学习的内容就难以真正理解,更谈不上灵活运用。如学习复平面这个概念时,提出问题:如果P是复平面内表示复数a bi(a、b∈R)的点,分别指出在下列条件下点P的位置:(1)a>0,b>0;(2)a<0,b>0;(3)a=0,b≤0;(4)b>  相似文献   

12.
平面向量具有较强的工具性作用,向量方法不仅可以用来解决不等式、三角、复数、物理、测量等某些问题,还可以简洁明快地解决平面几何许多常见证明(平行、垂直、共线、相切、角相等)与求值(距离、角、比值等)问题.用向量法解决平面几何问题的一般途径是:问题条件翻译向量关系式向量运算其它向量关系式翻译问题结论向量法应用于平面几何中时,它是数学中的数与形完美结合,能使平面几何许多问题代数化,程序化,从而得到更有效的解决.1 利用两个非零向量a、b共线的充要条件a=λb(其中λ是实数),解决与“平行或共线”有关的问题.  例1 如图1,一…  相似文献   

13.
一.勿盲目搬用实数集中的公式或结论 (一) 在复数集中|a|=m,a≠±m 例1.已知|ab|+1=|a|+|b|,求复数a,b。学生常错解为:由|ab|+1=|a|+|b|可知(|a|-1))(|b|-1)。故|a|=1或|b|=1,∴a=±1或b=±1。说明:|a|=1,a=±1只在实数范围内成立。当a为复数时,适合|a|=1的数应该是复平面上的单位圆周上的一切点对应的复数。±1只是其中的两个,显然缩小了解集,故至误。一般地,|a|=m(m>0),复数a应是复平面上的以原点为圆心,以m为半径的圆周上的一切点对应的复数,不是在实数范围内成立的a=±m作为它的答案。  相似文献   

14.
复数z=a bi(a、b∈R),在复平面上对应的点为Z(a,b),点Z(a,b)在复平面上有下面的规律:1.左右平移:z c=(a bi) c=(a c) bi当c>0时,点Z(a,b)向右平移c个单位,得到点Z’(a c,b);当c<0时,点Z(a,b)向左平移|c|个单位,得到点Z’(a c,b).2.上下平移:z di=(a bi) di=a (b d)i当d>0时,点Z(a,b)向上平移d个单位,得到点Z’(a,b d);当d<0时,点Z(a,b)向下平移|d|个单位,得到点Z’(a,b d)。  相似文献   

15.
复数的复习,首先要求学生对于复数的概念及性质,四种表示方法及复数的运算法则要熟练掌握,并使他们明确任一复数Z=a bi与复平面内的一点Z(a,b)及它所表示的向量OZ,三者之间是一一对应的,并且复数的各种运算,都具有其特定的几何意义。这样才能灵活、准确地进行解题运算或  相似文献   

16.
新版高一数学 (下册 )第五章第三节《实数与向量的积》中 ,介绍了平面两个向量共线定理 :向量 b与非零向量 a共线的充要条件是有且只有一个实数λ,使得b =λa.由此 ,可以得到下列推论 :推论 1   OA、OB是平面内两不共线向量 ,向量OP满足 :OP =a OA +b OB( a,b∈ R) ,则 A、P、B三点共线的充要条件是 a +b =1.证明 :( 1)若 a +b=1,则 A P =OP - OA =( a -1) OA +b OB =b( OB - OA ) =b AB,故 AP与 A B共线 ,从而 A、P、B三点共线 ;( 2 )若 A、P、B三点共线 ,则存在唯一实数λ,使得AP =λAB,即 OP - OA =λ( OB - OA …  相似文献   

17.
复数的应用很广泛,特别是代数基本定理的复数证明,最简单明了,更引起人们对复数的应用的重视。复数的代数形式:三角形式:几何形式:平面上点z(a:N,原点到读点的向量流集会形式:规定:加法(a,b)+(c,b)=(a+c,in)乘法(a,b)·(c,b)=(ac-bd,ah+be)不管用什么形式表示的复数,我们知道确定一个复数需要且仅需要两个独立条件,这两个独立条件可以用两个实数表示,因此,复数的实质是这数对*N。复数的运算转化为平面上向量的运算,更有广泛的应用。一、代数形式的应用1、复数的模对于Z=a+hi等号成立的条件是Z…  相似文献   

18.
一、复数的五种形式 1.复数的整体形式— 2.复数的代数形式— 3.复数的三角形式—为辐角主值);a+bi(a,b〔R);y(。050+isin口):(y>0,0 4.复数的向量形式—02; 5.复数(在复平面上)的点的形式—(a,b),(a,b〔R). 事实上复数的第六种形式是指数形式—。口,但是中学阶段没有学习这部分内容. 二、复数整体运算常用的公式和真命题 1.公l+22二:一+:2:2 .2一:2二z:一22;3.—一_l才:、言.-二__公r’z,=万一名,;斗.1—!二一书〕.ZJ二l二l一盆0.2+之 、221:2=ZR‘:),(二加:的共扼复数等于其实部的二倍);7.:一:=i,2I(:),(:减:的共扼复数等于虚数单位‘…  相似文献   

19.
平面向量的数量积是高中数学的重点内容,而2个向量的“夹角”又是数量积中的一个重要概念,因此充分理解“夹角”的含义是解决有关数量积问题的关键.两个向量的“夹角”定义如下:已知两个非零向量a与b,过O点作向量OA=a,OB=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a,b的夹角.当且仅  相似文献   

20.
由于复数内容综合性强,复数问题的解法一般具有可选择性.结合复数及其运算的几何意义,许多复数问题可从其几何意义入手分析,利用数形结合的方法加以解决.本文意在对通过以下几个方面数形结合解复数题的基本思路,作进一步阐述,一、利用复数的几何表示解题复数Z=a+bi(a,bR)与复平面内的点P(a,b)是—一对应的,这就为通过图形直观地求解有关复数问题提供了依据.例求下列复数的三角式:一般地,设Z=a+bi,其三角形式是:(Ⅰ)若a>0,b>O,则(Ⅱ)若a>O,b<0,则(Ⅲ)若a<o,b<o,则二、利用复数的向量表示及复数…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号