首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>构造函数法是一种常用的解题方法,比如函数与方程、不等式问题,小题中构造可导函数解不等式是常见题型,如果巧妙地构造函数,进而研究函数的性质,问题就会迎刃而解,下面就几种题型和大家一起交流一下。一、构造f(x)±g(x)型例1定义在R上的函数f(x),其导函数f'(x)满足f'(x)>1,且f(2)=3,则关于x的不等式f(x)相似文献   

2.
若对导数有关概念、知识、方法理解不深不透,则在解题时常易发生偏差.本文就几个不等价关系作了简要的分析.1.“f'(x)>0”不等价于“f(x)是增函数”高中教科书第三册(选修Ⅱ)127页指出:“函数y=f(x)在某个区间内可导,如果f'(x)>0,则f(x)为增函数;如果f'(x)<0,则f(x)为减函数.”该法则为判定函数的单调性提供了依据.但在具体运用该法则时,也常发生问题.  相似文献   

3.
人教版高中数学教材第三册选修(Ⅱ)p_(121)中,关于复合函数的导数,已给出了鲜明的观点:设u=θ(x)在点x处可导,则复合函数f[θ(x)]在点x处可导,且f'(x)=f'(u)θ'(x),即y'_x=y'_u·u'_x。对复合函数的求导,关键在于选好中间变量,分清楚对哪个变量的求导,再"层层代换"。  相似文献   

4.
<正>一、求极值利用可导函数求函数极值的基本方法:设函数y=f(x)在点x_0处连续且f'(x)=0。若在点x_0附近左侧f'(x)>0,右侧f'(x)<0,则f(x_0)为函数的极大值;若在点x_0附近左侧f'(x)<0,右侧f'(x)>0,则f(x_0)为函数的极小值。  相似文献   

5.
新教材中对函数的单调性是这样描述的:一般地,设函数y=f(x)在某个区间内可导, 如果f'(x)>O,则f(x)为增函数; 如果f'(x)相似文献   

6.
由于导数为解决一些实际问题和初等数学的传统问题,提供了有效且一般性的方法,故导数将是数学高考的重要内容之一(近几年来,高考中导数知识的试题分值一般为12~19分).题型会涉及选择题、填空题和解答题.复习时应注意以下几个重点、热点问题.一、与导数的定义有关的问题例1设函数f(x)在点x0处可导,则f(x0+2Δx)-f(x0-Δx)Δx=()A.f'(x0)B.2f'(x0)C.3f'(x0)D.0解析f(x0+2Δx)-f(x0-Δx)Δx=2f(x0+2Δx)-f(x0)2Δx+f眼x0+(-Δx)演-f(x0)-Δx=2f'(x0)+f'(x0)=3f'(x0).选C.点评导数定义中的增量Δx有多种形式,可以是正也可以是负.例如,f'(x0)=…  相似文献   

7.
<正>导数知识是高中数学学习的一个重要内容,但导数知识具有一定的抽象性,使得学生不易理解掌握,错误频现,在高考中的得分率也不高,解题中的错误有以下几点值得同学们思考。1.误解导函数与单调区间的关系例1 f'(x)是f(x)在区间[a,b]的导函数,则"在区间(a,b)内f'(x)>0"是"f(x)在该区间内单调递增"的____条件。错解:充要。错因:一般地,由f'(x)>0能推出f(x)  相似文献   

8.
近几年随着导数进入高中教材,以三次函数为背景的题目经常出现在全国各地的高考试题中.但对于三次函数的性质学生了解并不多,教材中也没加以说明,这也影响了他们有效解决这类问题的途径和方法.我们知道二次函数图象的直观明了大大帮助了学生对函数性质的理解和掌握.本文将研究三次函f(x)=ax3 bx2 cx d(a>0)的图象与性质.三次函数f(x)=ax3 bx2 cx d(a>0x∈R),则f'(x)=3ax2 2bx c.f'(x)=6ax 2b=6a(x b/(3a)),当a>0,?=4b2?12ac>0时,f'(x)=0有两个根为213,3xb b aca=???x2=?b 3ba2?3ac,f'(x)=0的根为x0=?b/(3a).(1)当(,23]3xb b aca∈?∞???…  相似文献   

9.
导数的应用     
导数的应用是中学数学的一个重要内容.下面讨论利用导数研究函数性质.1利用导数研究函数的单调性在区间(a,b)内可导的函数f(x)在(a,b)上递增(或递减)的充要条件是:对于任意的x∈(a,b),有f'(x)≥0(或f'(x)≤0),且f'(x)在区间(a,b)的任意子区间上都不存在连续的点使得f'(x)=0.例1已知f(x)=kx3?x2+kx/3?16在R上单调递增,则k的取值范围是()A、k>1B、k≥1C、k>1D、k≥1分析由f(x)=kx3?x2+kx/3?16得f'(x)=3k x2?2x+k/3,又∵函数f(x)在R上单调递增,∴f'(x)≥0在R上恒成立,即3k x2?2x+k/3≥0在x∈R上恒成立.∴30,44310.3kk k??????=>???≤∴R≥1…  相似文献   

10.
正导数是判断函数单调性的有力工具.导函数大于零,则原函数为增函数,导函数小于零,则原函数为减函数.在求出导函数后,如果导函数的正负问题仍不明确,而导函数也可导,就可以再继续对导函数求导,即求出f″(x),则可以用f″(x)的正负去判断f'(x)的增减性,进而达到解决原函数f(x)的目的.下面结合高考真题来体会二次求导在解高考函数压轴题中的具体操作策略例1(2010安徽卷理第17题)设a为实数,函数f(x)=  相似文献   

11.
<正>高中阶段对数学公式要求做到正用、逆用、变用.中学阶段的导数公式主要是和、差、积、商的求导法则,即函数f(x),g(x)是可导函数,则[f(x)±g(x)]'=f'(x)±g'(x);[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x);  相似文献   

12.
不等式的证明是数学分析中经常遇到而且比较困难的问题,本文将对数学分析中不等式证明的常用方法作简单的归纳与总结。一、利用函数单调性证明不等式这是最常用最基本的方法。由文[1]定理7.1,若函数.f在(a,b)可导,则.f在(a,b)内递增(递减)的充要条件是f'(x)≥0(f'(x)≤0),x∈(a,b)。特别地,设函数f在(a,b)内可异,若f'(x)>0(f'(x)相似文献   

13.
<正>利用导数判断函数的单调性,进而确定函数的单调区间,这是导数的几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合的思想。特别要注意的是:(1)f(x)为增函数  f'(x)≥0且f'(x)=0的根有有限多个;(2)f(x)为减函数  f'(x)≤0且f'(x)=0的根有有限多个。例1若函数f(x)=x3-ax3-ax2+4在(0,2)上单调递减,求实数a的取值范围。  相似文献   

14.
一、选择题:1.下列结论不正确的是( ). A.若f'(x0)存在,则f(x)在x=x0处有定义B.在区间I上,f'(x)>0是f(x)在I上为增函数的充分条件C.若f'(x0)=0,则函数f(x)在x=x0处有极值D.若f(x)在x0处可导,则f(x)的图象在(x0,f(x0))处有切线  相似文献   

15.
例1(2004年重庆高考题)设函数f(x)=x(x-1)·(x-a),a>1,求导数f'(x),并证明有两个不同的极值点x1、x2.解析f'(x)=3x2-2(1+a)x+a.令f'(x)=0,得方程3x2-2(1+a)x+a=0.因Δ=4(a2-a+1)≥4a>0,故方程有两个不同的实根x1、x2.设x10;当x1x2时,f'(x)>0,因此,x1是极大值点,x2是极小值点.例2(2004年全国高考题)已知f(x)=ax3+3x2-x+1在R上是减函数,求a的取值范围.解析函数f(x)的导数:f'(x)=3ax2+6x-1.(Ⅰ)当f'(x)<0(xR)时,f(x)是减函数.3ax2+6x-1<0(xR)a<0且Δ…  相似文献   

16.
设三次函数f(x)=ax3+bx2+cx+d(a≠0),其导函数f'(x)=3ax2+2bx+c的判别式为△=4ab2-12ac,则有以下性质。1.△≤0时,三次函数f(x)在R上是单调函数。(1)当△≤0且a>0时,函数f(x)在R上单调递增。(2)当△≤0且a<0时,函数f(x)在R上单调递减。它们的图象如下图1、2。例说三次函数图象性质的应用$昆明三中@张邦宁  相似文献   

17.
<正>知识点:导数与函数的单调性(1)函数单调性的判定方法:设函数y=f(x)在某个区间内可导,如果f'(x)>0,则y=f(x)在该区间为增函数;如果f'(x)<0,则y=f(x)在该区间为减函数。(2)函数单调性问题包括:(1)求函数的单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;(2)利用单调性证明不等式或比较大小,常用构造函数法。一、求解含参函数的单调区间  相似文献   

18.
<正>构造函数法是高中解题中一种重要的解题方法.其基本思想是:通过构造适当的函数来转化问题,以利用所作函数的性质帮助论证或求解.比如,已知函数f(x)的定义域是R,f(0)=2,对任意的x∈R,f(x)+f'(x)>1恒成立,求不等式exf(x)>ex+1的解集.从已知"条件x∈R,f(x)+f'(x)>1恒成立"来看,自然想到依托f(x)来构造一个函数,然  相似文献   

19.
从f'(x)=0谈起     
<正>导数是解决函数图象、性质以及方程不等式等问题的有力工具,是数学高考重点之一.f'(x)=0的根是利用导数分析函数性质过程中最为核心的量,它关联着函数的单调性、极值(最值)等,但某些函数的导数为零时,根不易求得,成为解题过程中的难点.我们举例探究对非常规零点的求解或使用,寻求恰当处理方式,以便对后续问题的解决铺平道路.一、方程f'(x)=0无实数根例1(2016年北京高考题)设函数f(x)  相似文献   

20.
1.引例f(x)和g(x)是定义域为(-∞,0)∪(0,+∞)的可导奇函数和偶函数,当x<0时,f'(x)g(x)+f(x)g'x)>0,且g(-3)=0,解不等式.f(x)g(x)<0.分析:f'(x)g(x)+f(x)g'(x)是函数h(x)=f(x)g(x)的导数,据此可知h(x)在(-∞,0)上单调递增.由题意,h(x)为奇函数.又g(-3)=0,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号