首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, impulsive stabilization problems of discrete-time switched linear systems with time-varying delays are studied. The sequence of impulsive instants is nearly-periodic, i.e., it is close to a periodic impulse and the distance between them is an uncertain bounded term. A time-varying Lyapunov function is introduced to characterize the information of delays, switching signals and impulses, and a stability criterion LMI-based is obtained without any restrictions on the stability of the subsystems. Several design schemes of reduced-order/full-order impulsive controllers with or without time-varying delays are developed. Finally, three numerical examples are provided to illustrate the effectiveness of the established results.  相似文献   

2.
In this note, we will devote to investigate the stability of discrete-time switched positive linear time-varying systems (PLTVSs). Firstly, a new asymptotic stability criterion of discrete-time PLTVSs is obtained by using time-varying copositive Lyapunov functions (TVCLFs) and this criterion is then extended to the switched case based on the multiple TVCLFs. Furthermore, the sufficient conditions are derived for stability of discrete-time switched PLTVSs with stable subsystems by means of function-dependent average dwell time and function-dependent minimum dwell time. In addition, the stability sufficient conditions are drawn for the switched PLTVSs which contain unstable subsystems. It is worth noting that the difference of TVCLFs and multiple TVCLFs are both relaxed to indefinite in our work. The theoretical results obtained are verified by two numerical examples.  相似文献   

3.
This work deals with the problem of optimal residual generation for fault detection (FD) in linear discrete time-varying (LDTV) systems subject to uncertain observations. By introducing a generalized fault detection filter (FDF) with four parameter matrices as the residual generator, a novel FDF design scheme is formulated as two bi-objective optimization problems such that the sensitivity of residual to fault is enhanced and the robustness of residual to unknown input is simultaneously strengthened. A generalized operator based optimization approach is proposed to deduce solutions to the corresponding optimization problems in operator forms, where the related H/H or H?/H FD performance index is maximized. With the aid of the addressed methods, the connections among the derived solutions are explicitly announced. The parameter matrices of the FDF are analytically derived via solving simple matrix equations recursively. It is revealed that our proposed results establish an operator-based framework of optimal residual generation for some kinds of linear discrete-time systems. Illustrative examples are given to show the applicability and effectiveness of the proposed methods.  相似文献   

4.
《Journal of The Franklin Institute》2023,360(14):10499-10516
In this paper, we aim to study model-based event-triggered control for a class of uncertain switched discrete-time systems composed of stabilizable and unstabilizable subsystems. A nominal model is introduced at the controller side to form a dynamic controller so that it can provide a kind of approximate estimate of the system state for system input even the overall switched discrete-time system is running in open-loop during any two consecutive event-triggered instants. By using multi-Lyapunov function method and the average dwell time switching strategy, stability conditions given in linear matrix inequality form for the closed-loop switched discrete-time system are derived. The design of control gains is also given. Finally, a numerical example and a physical example are provided to verify the effectiveness and usefulness of the proposed method.  相似文献   

5.
6.
7.
This article investigates the stability analysis for a class of continuous-time switched systems with state constraints under pre-specified dwell time switchings. The state variables of the studied system are constrained to a unit closed hypercube. Firstly, based on the definition of set coverage, the system state under saturation is confined to a convex polyhedron and the saturation problem is converted into convex hull. Then, sufficient conditions are derived by introducing a class of multiple time-varying Lyapunov functions in the framework of pre-specified dwell time switchings. Such a dwell time is an arbitrary pre-specified constant which is independent of any other parameters. In addition, the proposed Lyapunov functions can efficiently eliminate the “jump” phenomena of adjacent Lyapunov functions at switching instants. The feature of this paper is that the definition of set coverage is utilized to replace the restriction on the row diagonally dominant matrices with negative diagonal elements to analyze stability. The other feature of the constructed time-varying Lyapunov functions is that there are two time-varying functions. One of the two time-varying functions contains the jump rate, which will present a certain degree of freedom in designing the dwell time switching signal. An iterative linear matrix inequality (LMI) algorithm is presented to verify the sufficient conditions. Finally, two examples are presented to show the validity of the method.  相似文献   

8.
9.
In this paper, the fault detection filter (FDF) design problem based on a dynamic event-triggered mechanism (DETM) is investigated for discrete-time systems with signal quantization and sensor nonlinearity. In order to conserve the limited network resources, a newly event-triggered mechanism with dynamic threshold is adopted to reduce the number of transmitted data through network more effectively. With the consideration of DETM, signal quantization and sensor nonlinearity, a fault detection filter is constructed to achieve the robustly asymptotic stability of established model with expected fault detection objective. In addition, by influence of DETM, external interference and quantization errors, a zonotopic residual evaluation mechanism is constructed to detect the occurring fault of plant. Finally, a practical example is provided to illustrate the effectiveness of proposed design approach.  相似文献   

10.
This paper is concerned with the problem of simultaneous fault detection and control of switched systems under the asynchronous switching. A switching law and fault detection/control units called fault detector/controllers are designed to guarantee the fault sensitivity and robustness of the closed-loop systems. Different from the existing results, a state reset strategy is introduced in the process of fault detection/control, which reduces the conservatism caused by the jump of multiple Lyapunov functions at switching instants. Further, the proposed strategy is only dependent the state of fault detector/controllers, which is available when the system state is invalid. Finally, by using a performance gain transform technique, non-convex fault sensitivity conditions are converted into the convex error attenuation ones. This further improves the fault detection effect. A numerical example is given to demonstrate the effectiveness of the proposed results.  相似文献   

11.
This paper is concerned with the problem of state feedback stabilization of a class of discrete-time switched singular systems with time-varying state delay under asynchronous switching. The asynchronous switching considered here means that the switching instants of the candidate controllers lag behind those of the subsystems. The concept of mismatched control rate is introduced. By using the multiple Lyapunov function approach and the average dwell time technique, a sufficient condition for the existence of a class of stabilizing switching laws is first derived to guarantee the closed-loop system to be regular, causal and exponentially stable in the presence of asynchronous switching. The stabilizing switching laws are characterized by a upper bound on the mismatched control rate and a lower bound on the average dwell time. Then, the corresponding solvability condition for a set of mode-dependent state feedback controllers is established by using the linear matrix inequality (LMI) technique. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed method.  相似文献   

12.
For stochastic nonlinear systems with time-varying delays, the existing robust control approaches are unnecessarily conservative in most practical scenarios. Within this context, a mathematically rigorous and computationally tractable tube-based model predictive control scheme is proposed in the framework of contraction theory. A contraction metric is systematically constructed via convex optimization by forming a differential LyapunovKrasovskii function on tangent space. It guarantees the perturbed actual solution trajectories to be contained within a robust positive invariant tube centered along the reference trajectories and results in an explicit exponential bound on the deviation. The application scenarios of the control contraction metric controller are extended from constant delay systems into time-varying delay systems thereby. Compared with the existing robust mechanism for time-delay systems based on min-max optimization formulation with a linear feedback controller, the proposed scheme greatly reduces the design conservativeness and yields a larger region of attraction. A sparse multi-dimensional Taylor network (MTN) is designed to parameterize the family of the geodesic. Compared to conventional NNs and MTN surrogates, sparse MTN features a more concise topology that enhances its computational efficiency conspicuously. Results of the numerical simulations verify the effectiveness of the proposed method.  相似文献   

13.
The problem of reachable set estimation is studied for discrete-time bilinear system in this paper. Time-varying delays and bounded input disturbances are both considered in bilinear system. The aim is to find reachable set that converges from all the states of system with initial conditions. By constructing Lyapunov–Krasovskii functional, sufficient delay-dependent less conservative stable conditions of reachable set estimation are obtained for bilinear delay system via the reciprocally convex combination and delay partition approaches. The derived theorem can guarantee that all the states of system with initial conditions from some domain are bounded in an ellipsoid and all the states from other domain are converged exponentially within a ball. One simulation example is presented to illustrate the correctness of the derived result in this paper.  相似文献   

14.
Mathematical models are an approximate of physical systems and design procedures are only complete when modeling errors have been quantified. Uncertainties are incorporated in design procedure to compensate such discrepancies and to add robustness. This paper investigates the design problem of parameter-dependent switched observers   for polytopic uncertain switched systems. State-space model is considered subject to time-varying uncertainties, and designated observer gains ensuring stability of overall system are also parameter-dependent. Synthesis procedure is demonstrated by employing ?? performance criteria which has become a standard for robust system design against external disturbances. This investigation is carried out in the framework of finite-time stability (FTS) and finite-time boundedness (FTB) which is the focus of researchers recently because of its apparent practical significance, especially after the emergent utilization of linear matrix inequalities.  相似文献   

15.
In this paper, the stability problem of discrete-time systems with time-varying delay is considered. Some new stability criteria are derived by using a switching technique. Compared with the Lyapunov–Krasovskii functional (LKF) approach, the method used in this paper has two features. First, a switched model, which is equivalent to the original system and contains more delay information, is introduced. It means that the criteria obtained by using the LKF method can be regarded as stability criteria for the switched system under arbitrary switching. Second, when the switching signal is known, the stability problem for the switched model under constrained switching is considered and piecewise LKFs are adopted to obtain stability criteria. Since constrained switching is less conservative than arbitrary switching if the switching signal is known, one can know that the obtained results in this paper are less conservative than some existing ones. Two examples are given to illustrate the effectiveness of the obtained results.  相似文献   

16.
17.
This paper is concerned with the output reachable set estimation for discrete-time switched systems. The switching signal is considered as persistent dwell-time (PDT), which is more general and flexible compared with the common dwell-time and average dwell-time switching. The estimation of output reachable set is determined by a collection of bounding ellipsoids based on a family of quasi-time-dependent (QTD) Lyapunov functions. Furthermore, a set of non-fragile QTD controllers is designed. Finally, two examples are employed to illustrate the potentials of proposed methods.  相似文献   

18.
19.
This paper studies the globally almost surely exponential stabilization of discrete-time switched systems (DSSs) with infinitely distributed delay. On account of the limitation of communication resources in the actual environment, a novel class of observer-based quantized control scheme is designed that incorporates the quantization of three kinds of signals: the measurement output, the state of observer, and the measurement output of observer. By employing S-procedure and some matrix inequality techniques, an algorithm is given to design the controller parameters. To reduce the conservativeness of the obtained results, new multiple Lyapunov–Krasovskii functionals (LKFs) with negative terms are proposed to deal with the infinitely distributed delay and mode-dependent average dwell time (MDADT) switching based on transition probability (TP) is introduced to study the stabilization of DSSs with both stable and unstable modes. It is worth highlighting that the improved stabilization conditions for DSSs can release the restriction on the length of dwell time (DT) of stable and unstable subsystems. Finally, a simulation example is presented to demonstrate the validity of the proposed method.  相似文献   

20.
The stability issue of discrete-time switched systems governed by cyclic switching laws is discussed in this paper. By establishing inverse-timer-based multiple Lyapunov functions (ITBMLFs), which are less conservative than traditional MLFs, limitations of the existing findings on discrete-time cyclic switched systems (DTCSSs) are well relaxed. Furthermore, from the perspective of computational complexity adjustment, the proposed ITBMLFs are confirmed to be more flexible than the previous ones, which is especially meaningful for the DTCSSs consisting of a large number of subsystems. Based on the cycle-dependent average dwell time (CD-ADT) concept and the ITBMLF approach, newly enhanced stability conditions are launched for DTCSSs where subsystems can be entirely or partially stable, or even completely unstable. Moreover, robust stability of DTCSSs can be achieved when norm-bounded and time-varying parameter uncertainties (NBTVPUs) are taken into account. Finally, the effectiveness and superiority of the proposed technologies are expounded through numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号