首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the last decade, considerable interest has been shown from industry, government and academia to the design of Vertical Take-Off and Landing (VTOL) autonomous aerial vehicles. This paper uses the recently developed sliding mode control driven by sliding mode disturbance observer (SMC-SMDO) approach to design a robust flight controller for a small quadrotor vehicle. This technique allows for a continuous control robust to external disturbance and model uncertainties to be computed without the use of high control gain or extensive computational power. The robustness of the control to unknown external disturbances also leads to a reduction of the design cost as less pre-flight analyses are required. The multiple-loop, multiple time-scale SMC-SMDO flight controller is designed to provide robust position and attitude control of the vehicle while relying only on knowledge of the limits of the disturbances. Extensive simulations of a 6 DOF computer model demonstrate the robustness of the control when faced with external disturbances (including wind, collision and actuator failure) as well as model uncertainties.  相似文献   

2.
In this paper, a fixed-time dual closed-loop attitude control method is investigated for a quadrotor unmanned aerial vehicle. Firstly, a fixed-time adaptive fast super-twisting disturbance observer is presented for estimating the unknown external disturbance. A modified adaptive law is employed based on an equivalent control method to obtain proper observer gains. Secondly, a fixed-time controller is designed by using a universal barrier Lyapunov function to satisfy asymmetric tracking error constraints. Then, a tracking differentiator is utilised to arrange the transition process. Finally, the implementation of the developed method in a quadrotor unmanned aerial vehicle is performed. Through stability analysis and simulation results, the effectiveness and superiority of the proposed fixed-time control method are validated.  相似文献   

3.
This paper investigates the fixed-time neural network adaptive (FNNA) tracking control of a quadrotor unmanned aerial vehicle (QUAV) to achieve flight safety and high efficiency. By combining radial basis function neural network (RBFNN) with fixed time adaptive sliding mode algorithm, a novel radial basis function neural network adaptive law is proposed. In addition, an extended state/disturbance observer (ESDO) is proposed to solve the problem of unmeasurable state and external interference, which can obtain reliable state feedback and interference input. Unlike most other ESO applications, this paper does not set the uncertainty model and external disturbances as total disturbances. Instead, the external disturbances are observed by extending the states and the observed states are fed back to the controller to cancel the disturbances. In view of the time-varying resistance coefficient and inertia torque in the QUAV model, the neural network is introduced so that the controller does not need to consider these nonlinear uncertainties. Finally, a numerical example is given to verify the effectiveness of the coupled non-simplified QUAV model.  相似文献   

4.
In this paper, a novel robust control strategy based on disturbance-compensation-gain (DCG) construction approach is proposed for small-scale unmanned helicopters in the presence of high-order mismatched disturbances. The overall control structure consists of two hierarchical layers. The inner-loop controller is to guarantee the stability of the unmanned helicopters subject to high-order mismatched disturbances. With the estimation of the disturbances and their successive derivatives via finite-time disturbance observer (FTDO), by properly designing some disturbance compensation gains, a novel robust controller is developed to remove the high-order mismatched disturbances from the output channels. The outer-loop controller is to produce flight commands for inner-loop system, as well as to track the reference trajectory, which is carried out with the dynamic inversion technique. The simulation results demonstrate that the unmanned helicopters are capable to perform flight missions autonomously with the proposed control strategy.  相似文献   

5.
This paper investigates the finite-time cooperative formation control problem for a heterogeneous system consisting of an unmanned ground vehicle (UGV) - the leader and an unmanned aerial vehicle (UAV) - the follower. The UAV system under consideration is subject to modeling uncertainties, external disturbance as well as actuator faults simultaneously, which is associated with aerodynamic and gyroscopic effects, payload mass, and other external forces. First, a backstepping controller is developed to stabilize the leader system to track the desired trajectory. Second, a robust nonsingular fast terminal sliding mode surface is designed for UAV and finite-time position control is achieved using terminal sliding mode technique, which ensures the formation error converges to zero in finite time in the presence of actuator faults and other uncertainties. Furthermore, by combining the radial basis function neural networks (NNs) with adaptive virtual parameter technology, a novel NN-based adaptive nonsingular fast terminal sliding formation controller (NN-ANFTSMFC) is developed. By means of the proposed adaptive control strategy, both uncertainties and actuator faults can be compensated without the prior knowledges of the uncertainty bounds and fault information. By using the proposed control schemes, larger actuator faults can be tolerated while eliminating control chattering. In order to realize fast coordinated formation, the expected position trajectory of UAV is composed of the leader position information and the desired relative distance with UGV, based on local distributed theory, in the three-dimensional space. The tracking and formation controllers are proved to be stable by the Lyapunov theory and the simulation results demonstrate the effectiveness of proposed algorithms.  相似文献   

6.
This paper investigates the problem of horizontal-plane trajectory tracking for fixed-wing unmanned aerial vehicles(UAVs) subjected to external disturbances and uncertainties including coupling and unmodeled dynamics. Under the assumption there exist ideal inner-loop controllers, the 12-state model is reduced to a 6-state translational motion model, which is described by a group of simplified nonlinear equations with equivalent disturbances via introducing general aerodynamic models. Then a new cascaded control structure consisting of an outer-loop controller for position control and inner-loop controllers for attitude and thrust control is proposed. Based on feedback linearization technology and signal compensation theory, the proposed controller applied for position control incorporates a nominal linear time-invariant controller and a robust compensator, the latter of which is introduced to restrain the effects of uncertainties and disturbances. The robust performance of the closed-loop system is proved. Actual experimental results conducted on a small fixed-wing aircraft demonstrate that the proposed control approach is effective.  相似文献   

7.
This paper presents a robust gain-scheduled output feedback yaw stability H controller design to improve vehicle yaw stability and handling performance for in-wheel-motor-driven electric vehicles. The main control objective is to track the desired yaw references by managing the external yaw moment. Since vehicle lateral states are difficult to obtain, the state feedback controller normally requires vehicle full-state feedback is a critical challenge for vehicle lateral dynamics control. To deal with the challenge, the robust gain-scheduled output feedback controller design only uses measurements from standard sensors in modern cars as feedback signals. Meanwhile, parameter uncertainties in vehicle lateral dynamics such as tire cornering stiffness and vehicle inertial parameters are considered and handled via the norm-bounded uncertainty, and linear parameter-varying polytope vehicle model with finite vertices is established through reducing conservative. The resulting robust gain-scheduled output feedback yaw stability controller is finally designed, and solved in term of a set of linear matrix inequalities. Simulations for single lane and double lane change maneuvers are implemented to verify the effectiveness of developed approach with a high-fidelity, CarSim®, full-vehicle model. It is confirmed from the results that the proposed controller can effectively preserve vehicle yaw stability and lateral handling performance.  相似文献   

8.
In this paper, the adaptive event-triggered formation-containment control for unmanned aerial vehicles (UAVs) is investigated in the presence of multiple leaders and external disturbances. By utilizing the leader-following model, the reference leader provides the desired flight trajectory for multiple formation leaders while the followers are driven into the convex hull spanned by the formation leaders. Initially, some effective disturbance observers are designed to obtain the estimations for eliminating the negative effects of external disturbances. Secondly, in order to alleviate the network burden, a dynamic triggering law is designed for the adaptive event-triggered mechanism (AETM) and the triggering frequency is heavily related to the triggering errors. Then, by exploiting Kronecker product technique and Lyapunov stability theory, two sufficient conditions on the stability of closed-loop system are established, which can help achieve the desired formation control target. Furthermore, the controller gains and observer ones can be determined by calculating the derived linear matrix inequalities (LMIs). Finally, a simulation example is given to illustrate the feasibility of the designed control protocol.  相似文献   

9.
In determining flight controls for launch vehicle systems, several uncertain factors must be taken into account, including a variety of payloads, a wide range of flight conditions and different mission profiles, wind disturbances and plant uncertainties. Crewed vehicles must adhere to human rating requirements, which limit the angular rates. Sliding mode control algorithms that are inherently robust to external disturbances and plant uncertainties are very good candidates for improving the robustness and accuracy of the flight control systems. Recently emerging Higher Order Sliding Mode (HOSM) control is even more powerful than the classical Sliding Mode Controls (SMC), including the capability to handle systems with arbitrary relative degree. This paper proposes sliding mode launch vehicle flight controls using classical SMC driven by the sliding mode disturbance observer (SMDO) and higher-order multiple and single loop designs. A case study on the SLV-X Launch Vehicle studied under a joint DARPA/Air Force program called the Force Application and Launch from CONtinental United States (FALCON) program is shown. The intensive simulations demonstrate efficacy of the proposed HOSM and SMC-SMDO control algorithms for launch vehicle attitude control.  相似文献   

10.
The problem of position tracking of a mini drone subject to wind perturbations is investigated. The solution is based on a detailed unmanned aerial vehicle (UAV) model, with aerodynamic coefficients and external disturbance components, which is introduced in order to better represent the impact of the wind field. Then, upper bounds of wind-induced disturbances are characterized, which allow a sliding mode control (SMC) technique to be applied with guaranteed convergence properties. The peculiarity of the considered case is that the disturbance upper bounds depend on the control amplitude itself (i.e. the system is nonlinear in control), which leads to a new procedure for the control tuning presented in the paper. The last part of the paper is dedicated to the analysis and reduction of chattering effects, as well as investigation of rotor dynamics issues. Conventional SMC with constant gains, proposed first order SMC, and proposed quasi-continuous SMC are compared. Nonlinear UAV simulator, validated through in-door experiments, is used to demonstrate the effectiveness of the proposed controls.  相似文献   

11.
This paper is concerned with the adaptive sliding mode control (ASMC) design problem for a flexible air-breathing hypersonic vehicle (FAHV). This problem is challenging because of the inherent couplings between the propulsion system, the airframe dynamics and the presence of strong flexibility effects. Due to the enormous complexity of the vehicle dynamics, only the longitudinal model is adopted for control design in the present paper. A linearized model is established around a trim point for a nonlinear, dynamically coupled simulation model of the FAHV, then a reference model is designed and a tracking error model is proposed with the aim of the ASMC problem. There exist the parameter uncertainties and external disturbance in the model, which are not necessary to satisfy the so-called matched condition. A robust sliding surface is designed, and then an adaptive sliding mode controller is designed based on the tracking error model. The proposed controller can drive the error dynamics onto the predefined sliding surface in a finite time, and guarantees the property of asymptotical stability without the information of upper bound of uncertainties as well as perturbations. Finally, simulations are given to show the effectiveness of the proposed control methods.  相似文献   

12.
The integrating characteristics are commonly found in composition control and level control of a distillation column in chemical processes. This paper presents a simple and intuitive robust tuning method of two-degree-of-freedom (2DoF) proportional-integral (PI) controller for integrating processes with dead time. The frequency response model matching approach is utilized with performance and robustness considerations for both regulatory and servo control issues. The regulatory control issue aims at matching the frequency response of the closed-loop system with that of the reference model for disturbance rejection, where the feedback controller parameters are calculated by solving a group of overdetermined algebraic equations subject to a robustness constraint evaluated by the maximum sensitivity. The target of the servo response is to follow a prescribed set-point reference trajectory, with the set-point weighting factor tuned to satisfy a defined tracking performance metric. A curve fitting procedure is utilized to generate analytical tuning rules in terms of the process model parameters and the desired robustness specification. It is shown that, apart from giving more exact achievement of the control system robustness, the tuning rules presented work well for a wider range of process dynamics than the existing methods. Illustrative examples are given to show the effectiveness of the proposed method.  相似文献   

13.
This work aims to design a neural network-based fractional-order backstepping controller (NNFOBC) to control a multiple-input multiple-output (MIMO) quadrotor unmanned aerial vehicle (QUAV) system under uncertainties and disturbances and unknown dynamics. First, we investigated the dynamic of QUAV composed of six inter-connected nonlinear subsystems. Then, to increase the convergence speed and control precision of the classical backstepping controller (BC), we design a fractional-order BC (FOBC) that provides further degrees of freedom in the control parameters for every subsystem. Besides, designing control is a challenge as the FOBC requires knowledge of accurate mathematical model and the physical parameters of QUAV system. To address this problem, we propose an adaptive approximator that is a radial basis function neural network (RBFNN) included in FOBC to fix the unknown dynamics problem which results in the new approach NNFOBC. Furthermore, a robust control term is introduced to increase the tracking performance of a reference signal as parametric uncertainties and disturbances occur. We have used Lyapunov's theorem to derive adaptive laws of control parameters. Finally, the outcoming results confirm that the performance of the proposed NNFOBC controller outperforms both the classical BC , FOBC and a neural network-based classical BC controller (NNBC) and under parametric uncertainties and disturbances.  相似文献   

14.
In this study, a new robust homography-based visual tracking control approach for the quadrotor unmanned aerial vehicle (UAV) is developed. Specifically, employing the homography matrix as feedback, a hierarchical homography-based visual servoing (HBVS) scheme with a new command attitude extraction method to account for the underactuation of UAV is proposed. On this basis, a smooth hyperbolic tangent function is fulfilled as an augmented part of the backstepping control scheme, which guarantees the non-negative total thrust and avoid singularity. Additionally, a cascaded filter-based estimator and adaptive laws with integrable functions are embedded to counteract uncertainties including external perturbations, unknown acceleration of the moving target, and unknown image depth, and to facilitate the system’s asymptotic stability simultaneously. The theoretical analysis testifies that the whole close-loop system is asymptotically stable. Simulations further verify that the proposed HBVS controller can realize the visual tracking with a superior performance.  相似文献   

15.
To expand the potential of uncertainty and disturbance estimator (UDE)-based control in practical application to most industrial stable processes, this paper proposes a convenient yet robust tuning rule according to the widely used first-order plus time delay (FOPTD) plant. The Smith predictor is first introduced to anticipate the delay-free output, which guarantees signal synchronizations in three control modules and enables remarkable restorations of nominal stability and performance. Then a second-order filter is employed in UDE to decouple the trade-off between disturbance rejection and noise attenuation. Based on this improvement and fixing both tracking speed and feedback gain to suggested patterns, the exhaustive evaluations for robustness against model distortion are executed through scanning the dimensionless filter bandwidth. The boundary demarcation triggered by the plunge of the continuous range of tolerable mismatched delays subsequently facilitates the formulation of an intuitive tuning rule with prescribed robustness. Its inherent model-based scaling property largely enables this rule to be implemented readily in industrial processes just like the proportional-integral-derivative (PID) controller. Several representative simulations are performed to demonstrate the merits of the proposed method over the related control strategies. And the promising prospect of the UDE-based control in the practical application is further illustrated by conducting a water level control experiment.  相似文献   

16.
This paper presents a robust scheme for fixed-time tracking control of a multirotor system. The aircraft is subjected to matched lumped disturbances, i.e., unmodeled dynamics, parameters uncertainties, and external perturbations besides measurement noise. Firstly, a novel Nonlinear Homogeneous Continuous Terminal Sliding Manifold (NHCTSM) based on the weighted homogeneity theory is presented. The sliding manifold is designed with prescribed dynamics featuring Global Asymptotic Stability (GAS) and fixed-time convergence. Then, a novel Fixed-time Non-switching Homogeneous Nonsingular Terminal Sliding Mode Control (FNHNTSMC) is proposed for the position and attitude loops by employing the developed NHCTSM and an appropriate reaching law. Moreover, the control framework incorporates a disturbance observer to feedforward and compensate for the disturbances. The designed control scheme can drive the states of the system to the desired references in fixed-time irrespective of the values of the Initial Conditions (ICs). Since the existing works on homogeneous controllers rely on the bi-limit homogeneity concept in the convergence proofs, the estimate of the settling-time or its upper-bound cannot be given explicitly. In contrast, this study employs Lyapunov Quadratic Function (LQF) and Algebraic Lyapunov Equation (ALE) in the stability analysis of both controller and observer. Following this method, an expression of the upper-bound of the settling-time is explicitly derived. Furthermore, to assure the Uniform Ultimate Boundedness (UUB) of all signals in the feedback system, the dynamics of the observer and controller are jointly analyzed. Simulations and experiments are conducted to quantify the control performance. The proposed approach achieves superior performance compared with recent literature on fixed-time/finite-time control and a commercially available PID controller. The comparative results witness that the developed control scheme improves the convergence-time, accuracy, and robustness while overcoming the singularity issue and mitigating the chattering effect of conventional SMC.  相似文献   

17.
This paper presents an intelligent controller for underwater vehicle-manipulator systems (UVMS) based on the neuro-fuzzy approach. The controller is composed of fuzzy PD control with membership function tuning by linguistic hedge. A neural network compensator approximates the dynamics of the UVMS in decentralized form. The new controller has the advantages of simplicity of implementation due to decentralized design, precision, and robustness to payload variations and hydrodynamic disturbances. It has significantly low energy consumption compared to both the conventional PD and conventional fuzzy control methods. The effectiveness of the proposed controller is illustrated by results of simulations for a six degrees of freedom autonomous underwater vehicle with a three degrees of freedom on-board manipulator.  相似文献   

18.
This paper presents an integrated and practical control strategy to solve the leader–follower quadcopter formation flight control problem. To be specific, this control strategy is designed for the follower quadcopter to keep the specified formation shape and avoid the obstacles during flight. The proposed control scheme uses a hierarchical approach consisting of model predictive controller (MPC) in the upper layer with a robust feedback linearization controller in the bottom layer. The MPC controller generates the optimized collision-free state reference trajectory which satisfies all relevant constraints and robust to the input disturbances, while the robust feedback linearization controller tracks the optimal state reference and suppresses any tracking errors during the MPC update interval. In the top-layer MPC, two modifications, i.e. the control input hold and variable prediction horizon, are made and combined to allow for the practical online formation flight implementation. Furthermore, the existing MPC obstacle avoidance scheme has been extended to account for small non-apriorily known obstacles. The whole system is proved to be stable, computationally feasible and able to reach the desired formation configuration in finite time. Formation flight experiments are set up in Vicon motion-capture environment and the flight results demonstrate the effectiveness of the proposed formation flight architecture.  相似文献   

19.
Robust performance of a flight control system in the presence of parametric uncertainty and external disturbances is of paramount importance to a successful planetary exploration program. The present research is concerned with the design of an autopilot that uses high-order sliding mode (HOSM) control principles so as to enhance the robustness properties of a lunar landing vehicle during the approach phase of powered descent. The design technique is applied to a high-fidelity simulation of the Apollo Lunar Module (LM). The design efficiently utilizes both the reaction control system (RCS) actuators and the severely rate-limited gimbal drive actuator (GDA) to effect smooth detection and compensation of sensed angular acceleration disturbances about the vehicle's control axes. The integration of a HOSM control law for the RCS effectors with a HOSM disturbance observer is shown to provide performance comparable to that of the heritage autopilot and may also avoid some difficulties encountered in the Apollo flights. Performance is maintained with the controller implemented in discrete time in the presence of a realistic vehicle and sensor model, demonstrating a unique application of sliding mode control to a complex aerospace system.  相似文献   

20.
In this paper, the robust motion control problem is investigated for quadrotors. The proposed controller includes two parts: an attitude controller and a position controller. Both the attitude and position controllers include a nominal controller and a robust compensator. The robust compensators are introduced to restrain the influence of uncertainties such as nonlinear dynamics, coupling, parametric uncertainties, and external disturbances in the rotational and translational dynamics. It is proven that the position tracking errors are ultimately bounded and the boundaries can be specified by choosing controller parameters. Experimental results on the quadrotor demonstrate the effectiveness of the robust control method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号