首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
In this paper, the problem of stability of uncertain cellular neural networks with discrete and distribute time-varying delays is considered. Based on the Lyapunov function method and convex optimization approach, a new delay-dependent stability criterion of the system is derived in terms of LMI (linear matrix inequality). In order to solve effectively the LMI as a convex optimization problem, the interior-point algorithm is utilized in this work. A numerical example is given to show the effectiveness of our results.  相似文献   

2.
This paper studies the neural adaptive control design for robotic systems with uncertain dynamics under the existence of velocity constraints and input saturation. The control objective is achieved by choosing a control Lyapunov function using joint error variables that are restricted to linear growth and furthermore by introducing a secant type barrier Lyapunov function for constraining the joint rate variables. The former is exploited to bind the forward propagation of the position errors, and the latter is utilized to impose hard bounds on the velocity. Effective input saturation is expressed, and neural networks are employed to tackle the uncertainty problem in the system dynamics. Feasibility conditions are formulated, and the optimal design parameters are obtained by solving the constrained optimization problem. We prove that under the proposed method, semi-global uniform ultimate boundedness of the closed-loop system can be guaranteed. Tracking errors meanwhile converge to small neighborhoods of the origin, and violations of predefined velocity constraints are avoided. Finally, numerical simulations are performed to verify the effectiveness of the theoretical developments.  相似文献   

3.
The problem of source localization using time-difference-of-arrival (TDOA) and frequency-difference-of-arrival (FDOA) measurements has been widely studied. It is commonly formulated as a weighted least squares (WLS) problem with quadratic equality constraints. Due to the nonconvex nature of this formulation, it is difficult to produce a global solution. To tackle this issue, semidefinite programming (SDP) is utilized to convert the WLS problem to a convex optimization problem. However, the SDP-based methods will suffer obvious performance degradation when the noise level is high. In this paper, we devise a new localization solution using the SDP together with reformulation-linearization technique (RLT). Specifically, we firstly apply the RLT strategy to convert the WLS problem to a convex problem, and then add the SDP constraint to tighten the feasible region of the resultant formulation. Moreover, this solution is also extended for cases when there are sensor position and velocity errors. Numerical results show that our solution has significant accuracy advantages over the existing localization schemes at high noise levels.  相似文献   

4.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

5.
In this paper, a distributed time-varying convex optimization problem with inequality constraints is discussed based on neurodynamic system. The goal is to minimize the sum of agents’ local time-varying objective functions subject to some time-varying inequality constraints, each of which is known only to an individual agent. Here, the optimal solution is time-varying instead of constant. Under an undirected and connected graph, a distributed continuous-time consensus algorithm is designed by using neurodynamic system, signum functions and log-barrier penalty functions. The proposed algorithm can be understood through two parts: one part is used to reach consensus and the other is used to achieve gradient descent to track the optimal solution. Theoretical studies indicate that all agents will achieve consensus and the proposed algorithm can track the optimal solution of the time-varying convex problem. Two numerical examples are provided to validate the theoretical results.  相似文献   

6.
Moving object detection is one of the most challenging tasks in computer vision and many other fields, which is the basis for high-level processing. Low-rank and sparse decomposition (LRSD) is widely used in moving object detection. The existing methods primarily address the LRSD problem by exploiting the approximation of rank functions and sparse constraints. Conventional methods usually consider the nuclear norm as the approximation of the low-rank matrix. However, the actual results show that the nuclear norm is not the best approximation of the rank function since it simultaneously minimize all the singular values. In this paper, we exploit a novel nonconvex surrogate function to approximate the low-rank matrix and propose a generalized formulation for nonconvex low-rank and sparse decomposition based on the generalized singular value thresholding (GSVT) operator. And then, we solve the proposed nonconvex problem via the alternating direction method of multipliers (ADMM), and also analyze its convergence. Finally, we give numerical results to validate the proposed algorithm on both synthetic data and real-life image data. The results demonstrate that our model has superior performance. And we use the proposed nonconvex model for moving objects detection, and provide the experimental results. The results show that the proposed method is more effective than representative LRSD based moving objects detection algorithms.  相似文献   

7.
In this paper, the distributed optimization problem is investigated by employing a continuous-time multi-agent system. The objective of agents is to cooperatively minimize the sum of local objective functions subject to a convex set. Unlike most of the existing works on distributed convex optimization, here we consider the case where the objective function is pseudoconvex. In order to solve this problem, we propose a continuous-time distributed project gradient algorithm. When running the presented algorithm, each agent uses only its own objective function and its own state information and the relative state information between itself and its adjacent agents to update its state value. The communication topology is represented by a time-varying digraph. Under mild assumptions on the graph and the objective function, it shows that the multi-agent system asymptotically reaches consensus and the consensus state is the solution to the optimization problem. Finally, several simulations are carried out to verify the correctness of our theoretical achievements.  相似文献   

8.
This paper concentrates on a class of decentralized convex optimization problems subject to local feasible sets, equality and inequality constraints, where the global objective function consists of a sum of locally smooth convex functions and non-smooth regularization terms. To address this problem, a synchronous full-decentralized primal-dual proximal splitting algorithm (Syn-FdPdPs) is presented, which avoids the unapproximable property of the proximal operator with respect to inequality constraints via logarithmic barrier functions. Following the proposed decentralized protocol, each agent carries out local information exchange without any global coordination and weight balancing strategies introduced in most consensus algorithms. In addition, a randomized version of the proposed algorithm (Rand-FdPdPs) is conducted through subsets of activated agents, which further removes the global clock coordinator. Theoretically, with the help of asymmetric forward-backward-adjoint (AFBA) splitting technique, the convergence results of the proposed algorithms are provided under the same local step-size conditions. Finally, the effectiveness and practicability of the proposed algorithms are demonstrated by numerical simulations on the least-square and least absolute deviation problems.  相似文献   

9.
In this paper, a modified adaptive neural network for the compensation of deadzone is described, and simulated on a hydraulic positioning system, in which the dynamic model is separated into a series of connection of a nonlinear (deadzone) subsystem and a linear plant. The proposed approach uses two neural networks. One is the radial basis function (RBF) neural network, which is used for identifying parameters of deadzone. Based on the penalty function used in optimization theory, a multi-objective cost function with constraint is adopted to provide the best deadzone approximation. The result is used to train the other neural network for the inverse compensation of deadzone. The RBF neural network also generates the parameters of the linear plant for the design of an adaptive controller. A convergence analysis for the network training process is also presented.  相似文献   

10.
This paper investigates the problem of decentralized adaptive backstepping control for a class of large-scale stochastic nonlinear time-delay systems with asymmetric saturation actuators and output constraints. Firstly, the Gaussian error function is employed to represent a continuous differentiable asymmetric saturation nonlinearity, and barrier Lyapunov functions are designed to ensure that the output parameters are restricted. Secondly, the appropriate Lyapunov–Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions, and the neural networks are employed to approximate the unknown nonlinearities. At last, based on Lyapunov stability theory, a decentralized adaptive neural control method is proposed, and the designed controller decreases the number of learning parameters. It is shown that the designed controller can ensure that all the closed-loop signals are 4-Moment (or 2 Moment) semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges to a small neighborhood of the origin. Two examples are provided to show the effectiveness of the proposed method.  相似文献   

11.
This paper considers a nonsmooth constrained distributed convex optimization over multi-agent systems. Each agent in the multi-agent system only has access to the information of its objective function and constraint, and cooperatively minimizes the global objective function, which is composed of the sum of local objective functions. A novel continuous-time algorithm is proposed to solve the distributed optimization problem and effectively characterize the appropriate gain of the penalty function. It should be noted that the proposed algorithm is based on an adaptive strategy to avoid introducing the primal-dual variables and estimating the related exact penalty parameters. Additional, it is demonstrated that the state solution of the proposed algorithm achieves consensus and converges to an optimal solution of the optimization problem. Finally, numerical simulations are given and the proposed algorithm is applied to solve the optimal placement problem and energy consumption problem.  相似文献   

12.
《Journal of The Franklin Institute》2019,356(17):10196-10215
This paper deals with the large category of convex optimization problems on the framework of second-order multi-agent systems, where each distinct agent is assigned with a local objective function, and the overall optimization problem is defined as minimizing the sum of all the local objective functions. To solve this problem, two distributed optimization algorithms are proposed, namely, a time-triggered algorithm and an event-triggered algorithm, to make all agents converge to the optimal solution of the optimization problem cooperatively. The main advantage of our algorithms is to remove unnecessary communications, and hence reduce communication costs and energy consumptions in real-time applications. Moreover, in the proposed algorithms, each agent uses only the position information from its neighbors. With the design of the Lyapunov function, the criteria about the controller parameters are derived to ensure the algorithms converge to the optimal solution. Finally, numerical examples are given to illustrate the effectiveness of the proposed algorithms.  相似文献   

13.
The terminal iterative learning control is designed for nonlinear systems based on neural networks. A terminal output tracking error model is obtained by using a system input and output algebraic function as well as the differential mean value theorem. The radial basis function neural network is utilized to construct the input for the system. The weights are updated by optimizing an objective function and an auxiliary error is introduced to compensate the approximation error from the neural network. Both time-invariant input case and time-varying input case are discussed in the note. Strict convergence analysis of proposed algorithm is proved by the Lyapunov like method. Simulations based on train station control problem and batch reactor are provided to demonstrate the effectiveness of the proposed algorithms.  相似文献   

14.
This paper studies the problem of robust orbital control for low earth orbit (LEO) spacecraft rendezvous subjects to the parameter uncertainties, the constraints of small-thrust and guaranteed cost during the orbital transfer process. In particular, the rendezvous process is divided into in-plane motion and out-plane motion based on C-W equations, and the relative motion models with parameter uncertainties are established. By considering the property of null controllable with vanishing energy (NCVE), the problem of orbital transfer control with small thrust and bounded control cost is proposed. A new Lyapunov approach is introduced, and the controller design problem is cast into a convex optimization problem subjects to linear matrix inequality (LMI) constraints. With the obtained controller, the orbit transfer process can be accomplished with small thrust and the control cost has an upper bound simultaneously. Different possible initial states of the transfer orbit are also analyzed for the controller design. An illustrative example is provided to show the effectiveness of the proposed control design method, and the different performances caused by different initial states of the transfer orbit are illustrated.  相似文献   

15.
This paper presents a fixed-time composite neural learning control scheme for nonlinear strict-feedback systems subject to unknown dynamics and state constraints. To address the problem of state constraints, a new unified universal barrier Lyapunov function is proposed to convert the constrained system into an unconstrained one. Taking the unconstrained system, a modified fixed-time convergence state predictor is explored, enabling the prediction error for compensating the neural adaptive law to be obtained and improving the learning ability of online neural networks (NNs). Without employing fractional power terms or a complicated switching strategy to build the control law, a new method of constructing a smooth fixed-time dynamic surface control scheme is proposed. This overcomes the potential singularity problem and the explosion of complexity often encountered in fixed-time back-stepping designs. The representative features of our design are threefold. First, it is free of the fractional power terms, yet offers fixed-time convergence. Second, it addresses the state constraint problem without requiring a feasibility check. Third, it constructs a new state-predictor and enhances the approximation accuracy of NNs. The stability of the proposed control scheme is analyzed using the Lyapunov technique. Simulation results are presented to illustrate the effectiveness of the proposed controller.  相似文献   

16.
This paper addresses a robust tube based model predictive control (RTBMPC) strategy for tracking problem of piecewise affine (PWA) linear systems. The core idea of the RTBMPC strategy is to robustly control an uncertain system through its nominal system and an additional feedback term which rejects a bounded additive disturbance. In tracking problem, RTBMPC strategy should be capable to steer the uncertain system to a given setpoint fulfilling the constraints. But if the setpoint changes, the controller may not success due to the loss of feasibility of the optimization problem. This paper employs several novel features to deal with tracking problem. First, the tracking problem is converted into the regulation problem by introducing an extra system called regulation nominal system that its constraints are translated from tracking into regulation. It leads to a reduction in complexity of the objective function. Then, the feasibility region is enlarged for given setpoint without increasing the prediction horizon by changing the terminal constraint set at different steps of RTBMPC problem solving. Simulation examples, including two different case studies, are presented to illustrate the effectiveness of the proposed RTBMPC.  相似文献   

17.
In this paper, we address the issue of sparse signal recovery in wireless sensor networks (WSNs) based on Bayesian learning. We first formulate a compressed sensing (CS)-based signal recovery problem for the detection of sparse event in WSNs. Then, from the perspective of energy saving and communication overhead reduction of the WSNs, we develop an optimal sensor selection algorithm by employing a lower-bound of the mean square error (MSE) for the MMSE estimator. To tackle the nonconvex difficulty of the optimum sensor selection problem, a convex relaxation is introduced to achieve a suboptimal solution. Both uncorrelated and correlated noises are considered and a low-complexity realization of the sensor selection algorithm is also suggested. Based on the selected subset of sensors, the sparse Bayesian learning (SBL) is utilized to reconstruct the sparse signal. Simulation results illustrate that our proposed approaches lead to a superior performance over the reference methods in comparison.  相似文献   

18.
This paper studies the charging/discharging scheduling problem of plug-in electric vehicles (PEVs) in smart grid, considering the users’ satisfaction with state of charge (SoC) and the degradation cost of batteries. The objective is to collectively determine the energy usage patterns of all participating PEVs so as to minimize the energy cost of all PEVs while ensuring the charging needs of PEV owners. The challenges herein are mainly in three folds: 1) the randomness of electricity price and PEVs’ commuting behavior; 2) the unknown dynamics model of SoC; and 3) a large solution space, which make it challenging to directly develop a model-based optimization algorithm. To this end, we first reformulate the above energy cost minimization problem as a Markov game with unknown transition probabilities. Then a multi-agent deep reinforcement learning (DRL)-based data-driven approach is developed to solve the Markov game. Specifically, the proposed approach consists of two networks: an extreme learning machine (ELM)-based feedforward neural network (NN) for uncertainty prediction of electricity price and PEVs’ commuting behavior and a Q network for optimal action-value function approximation. Finally, the comparison results with three benchmark solutions show that our proposed algorithm can not only adaptively decide the optimal charging/discharging policy by on-line learning process, but also yield a lower energy cost within an unknown market environment.  相似文献   

19.
Multiple-prespecified-dictionary sparse representation (MSR) has shown powerful potential in compressive sensing (CS) image reconstruction, which can exploit more sparse structure and prior knowledge of images for minimization. Due to the popular L1 regularization can only achieve the suboptimal solution of L0 regularization, using the nonconvex regularization can often obtain better results in CS reconstruction. This paper proposes a nonconvex adaptive weighted Lp regularization CS framework via MSR strategy. We first proposed a nonconvex MSR based Lp regularization model, then we propose two algorithms for minimizing the resulting nonconvex Lp optimization problem. According to the fact that the sparsity levels of each regularizers are varying with these prespecified-dictionaries, an adaptive scheme is proposed to weight each regularizer for optimization by exploiting the difference of sparsity levels as prior knowledge. Simulated results show that the proposed nonconvex framework can make a significant improvement in CS reconstruction than convex L1 regularization, and the proposed MSR strategy can also outperforms the traditional nonconvex Lp regularization methodology.  相似文献   

20.
Networked systems using redundant channels to transmit data can effectively reduce the probability of data loss and improve system reliability and control margin. However, the structural complexity and economic cost of the system are also increased. To balance the redundancy and feasibility, the ratio of attraction domain to packet loss rate is defined as a balanced feasibility index. In this paper, single-channel packet loss is considered as Bernoulli distribution and a bounded packet loss network system control model is constructed as the arbitrary bounded packet loss control problem for redundant channel transmission network system. Therefore, the robust conditions of the closed-loop system and the constraints of the input and state are established under the framework of robust predictive control to construct the linear matrix inequality (LMI) optimization problem. Finally, to verify the effectiveness of the design method proposed in this paper, the discrete time-varying linear system and the main steam control system with redundant channels are used as study cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号